【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊CD上,且BG=CG,將△ADE沿AE對(duì)折至△AFE,延長(zhǎng)EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正確結(jié)論的個(gè)數(shù)是( )
A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)
【答案】D
【解析】
根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△ABG≌Rt△AFG;根據(jù)角的和差關(guān)系求得∠GAF=45°;在直角△ECG中,根據(jù)勾股定理可證CE=2DE;通過(guò)證明∠AGB=∠AGF=∠GFC=∠GCF,由平行線(xiàn)的判定可得AG∥CF;求出S△ECG,由S△FCG=即可得出結(jié)論.
①正確.理由:
∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);
②正確.理由:
∵∠BAG=∠FAG,∠DAE=∠FAE.
又∵∠BAD=90°,∴∠EAG=45°;
③正確.理由:
設(shè)DE=x,則EF=x,EC=12-x.在直角△ECG中,根據(jù)勾股定理,得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;
④正確.理由:
∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.
又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
⑤正確.理由:
∵S△ECG=GCCE=×6×8=24.
∵S△FCG===.
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖的對(duì)角線(xiàn)相交于點(diǎn)過(guò)點(diǎn)與分別相交于點(diǎn),
(1)求證:
(2)若圖中的條件都不變,將轉(zhuǎn)動(dòng)到圖的位置,那么上述結(jié)論是否成立?(不用證明)
(3)若將向兩方延長(zhǎng)與平行四邊形的兩對(duì)邊的延長(zhǎng)線(xiàn)分別相交(圖和圖),結(jié)論是否成立,說(shuō)明你的理由,(選用圖進(jìn)行證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)觀(guān)察推理:如圖 1,△ABC 中,∠ACB=90°,AC=BC,直線(xiàn) L 過(guò)點(diǎn)C,點(diǎn) A,B 在直線(xiàn) L 同側(cè),BD⊥L, AE⊥L,垂足分別為D,E
求證:△AEC≌△CDB
(2)類(lèi)比探究:如圖 2,Rt△ABC 中,∠ACB=90°,AC=4,將斜邊 AB 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn) 90°至 AB’, 連接B’C,求△AB’C 的面積
(3)拓展提升:如圖 3,等邊△EBC 中,EC=BC=3cm,點(diǎn) O 在 BC 上且 OC=2cm,動(dòng)點(diǎn) P 從點(diǎn) E 沿射線(xiàn)EC 以 1cm/s 速度運(yùn)動(dòng),連接 OP,將線(xiàn)段 OP 繞點(diǎn)O 逆時(shí)針旋轉(zhuǎn) 120°得到線(xiàn)段 OF,設(shè)點(diǎn) P 運(yùn)動(dòng)的時(shí)間為t 秒。
當(dāng)t= 秒時(shí),OF∥ED
若要使點(diǎn)F 恰好落在射線(xiàn)EB 上,求點(diǎn)P 運(yùn)動(dòng)的時(shí)間t
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=﹣1,且拋物線(xiàn)經(jīng)過(guò)A(1,0),C(0,3)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線(xiàn)y=mx+n經(jīng)過(guò)B、C兩點(diǎn),求直線(xiàn)BC和拋物線(xiàn)的解析式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸x=﹣1上找一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,求出點(diǎn)M的坐標(biāo);
(3)設(shè)點(diǎn)P為拋物線(xiàn)的對(duì)稱(chēng)軸x=﹣1上的一個(gè)動(dòng)點(diǎn),求使△BPC為直角三角形的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形OABC中,A(1,0),C(0,2),雙曲線(xiàn)y= (0<k<2)的圖象分別交AB,CB于點(diǎn)E,F(xiàn),連接OE,OF,EF,S△OEF=2S△BEF , 則k值為( )
A.
B.1
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘船由A港沿北偏東60°方向航行10km至B港,然后再沿北偏西30°方向航行10km至C港.
(1)求A,C兩港之間的距離(結(jié)果保留到0.1km,參考數(shù)據(jù):≈1.414,≈1.732);
(2)確定C港在A港的什么方向.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=ax+b與反比例函數(shù)y= ,其中ab<0,a、b為常數(shù),它們?cè)谕蛔鴺?biāo)系中的圖象可以是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)A、C分別在x軸的負(fù)半軸、y軸的正半軸上,點(diǎn)B在第二象限.將矩形OABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn),使點(diǎn)B落在y軸上,得到矩形ODEF,BC與OD相交于點(diǎn)M.若經(jīng)過(guò)點(diǎn)M的反比例函數(shù)y= (x<0)的圖象交AB于點(diǎn)N,S矩形OABC=32,tan∠DOE= ,則BN的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,高BD,CE交于點(diǎn)O,AO交BC于點(diǎn)F,則圖中共有全等三角形( )
A.8對(duì)B.7對(duì)C.6對(duì)D.5對(duì)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com