【題目】已知:如圖的對角線相交于點(diǎn)過點(diǎn)分別相交于點(diǎn)

1)求證:

2)若圖中的條件都不變,將轉(zhuǎn)動到圖的位置,那么上述結(jié)論是否成立?(不用證明)

3)若將向兩方延長與平行四邊形的兩對邊的延長線分別相交(圖和圖),結(jié)論是否成立,說明你的理由,(選用圖進(jìn)行證明)

【答案】1)見解析;(2OE=OF,仍然成立;(3OE=OF,仍然成立;理由見解析

【解析】

1)證明AOE≌△COFASA),即可解決問題.

2)(3)結(jié)論成立,證明方法類似(1).

1)證明:如圖(a)中,

∵四邊形ABCD是平行四邊形,

OA=OC,ABCD,

∴∠1=2,

∵∠AOE=COF

∴△AOE≌△COFASA),

OE=OF


2)解:結(jié)論成立.

理由:如圖(b)中,

∵四邊形ABCD是平行四邊形,

OA=OCADBC,

∴∠EAO=FCO

∵∠AOE=COF,

∴△AOE≌△COFASA),

OE=OF

3)解:結(jié)論成立.

如圖(c)中,

∵四邊形ABCD是平行四邊形,

OA=OC,ABCD,

∴∠E=F,

∵∠AOE=COF,

∴△AOE≌△COFASA),

OE=OF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)( ﹣1)1+ ﹣6sin45°+(﹣1)2009
(2)cos245°+ tan30°.
(3) sin45°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一塊矩形ABCD的空地上劃一塊四邊形MNPQ進(jìn)行綠化.如圖,四邊形的頂點(diǎn)在矩形的邊上,且AN=AM=CP=CQ=xcm,已知矩形的邊BC=200m,邊AB=am,a為大于200的常數(shù),設(shè)四邊形MNPQ的面積為sm2

(1)求S關(guān)于x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍.
(2)若a=400,求S的最大值,并求出此時(shí)x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題:①垂線段最短;②同位角相等;③如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行;④內(nèi)錯(cuò)角相等,兩直線平行;⑤經(jīng)過一點(diǎn)有且只有一條直線與已知直線平行;⑥如果=2,那么x=2.其中真命題有( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)D,E分別是⊙O的內(nèi)接正三角形ABC的AB,AC邊上的中點(diǎn),若⊙O的半徑為2,則DE的長等于( )

A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,的平分線于點(diǎn),平分.給出下列結(jié)論:①;②;③;④;⑤.其中正確的結(jié)論是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B、P的坐標(biāo)分別為(1,0),(2,5),(4,2).若點(diǎn)C在第一象限內(nèi),且橫坐標(biāo)、縱坐標(biāo)均為整數(shù),P是△ABC的外心,則點(diǎn)C的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,∠A=36°,∠B=72°,AC的垂直平分線分別交AC、AB于點(diǎn)D,E,則圖中等腰三角形的個(gè)數(shù)為( 。

A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=12,點(diǎn)E在邊CD上,且BG=CG,將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF.下列結(jié)論:①△ABG≌△AFG;②∠EAG=450;③CE=2DE;④AG∥CF;⑤S△FGC=.其中正確結(jié)論的個(gè)數(shù)是( )

A. 2個(gè) B. 3個(gè) C. 4個(gè) D. 5個(gè)

查看答案和解析>>

同步練習(xí)冊答案