【題目】已知直線yx+3x軸、y軸分別交于AB點,與yx0)的圖象交于CD點,E是點C關(guān)于點A的中心對稱點,EFOAF,若AOD的面積與AEF的面積之和為時,則k_____

【答案】2

【解析】

先求出A、B兩個點的坐標(biāo),再設(shè)C點的坐標(biāo)為(x1,x1+3),D點的坐標(biāo)為(x2x2+3)(x1x2),聯(lián)立y=x+3,則x1x2是一元二次方程x2+3x-k=0的兩個根,根據(jù)方程根的定義及一元二次方程根與系數(shù)的關(guān)系,并結(jié)合已知面積的條件即可求出k的值.

解:∵直線x軸、y軸分別交于A、B點,
A-3,0),B0,3).
代入,整理,得
設(shè)C點的坐標(biāo)為D點的坐標(biāo)為,
是一元二次方程的兩個根,
,

E是點C關(guān)于點A的中心對稱點,

E點坐標(biāo)為:

即:,
,


代入上式,得,


故答案為:-2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們規(guī)定平面內(nèi)點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D-d

1如圖1,在平面直角坐標(biāo)系xOy,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度

A1,0的距離跨度______________;

B- 的距離跨度____________;

C-3-2的距離跨度____________;

根據(jù)中的結(jié)果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是______________

2如圖2在平面直角坐標(biāo)系xOy,圖形G2為以D-10為圓心,2為半徑的圓直線y=kx-1上存在到G2的距離跨度為2的點,k的取值范圍

3如圖3,在平面直角坐標(biāo)系xOy射線OPy=xx≥0),E是以3為半徑的圓,且圓心Ex軸上運(yùn)動若射線OP上存在點到E的距離跨度為2,求出圓心E的橫坐標(biāo)xE的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某興趣小組用無人機(jī)進(jìn)行航拍測高,無人機(jī)從1號樓和2號樓的地面正中間B點垂直起飛到高度為50米的A處,測得1號樓頂部E的俯角為60°,測得2號樓頂部F的俯角為45°.已知1號樓的高度為20米,則2號樓的高度為_____(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 RtABC 中BC=2,以 BC 的中點 O 為圓心的⊙O 分別與 ABAC 相切于 D,E 兩點,的長為(

A.B.C.πD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.EABCDAD上一點,將ABE沿BE翻折得到FBE,點FBD,EF=DF.若∠C=52°,則∠ABE=____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知RtABCAC=8,AB=4,以點B為圓心作圓,當(dāng)B與線段AC只有一個交點時,則B的半徑的取值范圍是(

A.rB =B.4 < rB

C.rB = 4 < rB D.rB為任意實數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠BAC=90°,BC=10tanABC=,點OAB邊上動點,以O為圓心,OB為半徑的⊙O與邊BC的另一交點為D,過點DAB的垂線,交⊙O于點E,聯(lián)結(jié)BE、AE

1)如圖(1),當(dāng)AEBC時,求⊙O的半徑長;

2)設(shè)BO=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;

3)若以A為圓心的⊙A與⊙O有公共點D、E,當(dāng)⊙A恰好也過點C時,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面是小明設(shè)計的在一個平行四邊形內(nèi)作菱形的尺規(guī)作圖過程.

已知:四邊形是平行四邊形.

求作:菱形(點上,點上).

作法:①以為圓心,長為半徑作弧,交于點;

②以為圓心,長為半徑作弧,交于點;

③連接.所以四邊形為所求作的菱形.

根據(jù)小明設(shè)計的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明.

證明:∵,,

      

中,

∴四邊形為平行四邊形.

,

∴四邊形為菱形(   )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB為⊙O直徑,C為⊙O上的一點,過點C的切線與AB的延長線相交于點DCACD

1)連接BC,求證:BCOB;

2E中點,連接CE,BE,若BE2,求CE的長.

查看答案和解析>>

同步練習(xí)冊答案