【題目】如圖,某興趣小組用無人機進行航拍測高,無人機從1號樓和2號樓的地面正中間B點垂直起飛到高度為50米的A處,測得1號樓頂部E的俯角為60°,測得2號樓頂部F的俯角為45°.已知1號樓的高度為20米,則2號樓的高度為_____米(結(jié)果保留根號).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如示意圖,小華家(點A處)和公路(l)之間豎立著一塊35m長且平行于公路的巨型廣告牌(DE).廣告牌擋住了小華的視線,請在圖中畫出視點A的盲區(qū),并將盲區(qū)內(nèi)的那段公路計為BC.一輛以60km/h勻速行駛的汽車經(jīng)過公路段的時間是3s,已知廣告牌和公路的距離是40m,求小華家到公路的距離.(精確到1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xOy中,反比例函數(shù)y=的圖象過點A(6,1).
(1)求反比例函數(shù)的表達式;
(2)過點A的直線與反比例函數(shù)y=圖象的另一個交點為B,與y軸交于點P,若AP=3PB,求點B的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:在平面直角坐標系xOy中,直線y=a(x﹣m)+k稱為拋物線y=a(x﹣m)2+k的關(guān)聯(lián)直線.
(1)求拋物線y=x2+6x﹣1的關(guān)聯(lián)直線;
(2)已知拋物線y=ax2+bx+c與它的關(guān)聯(lián)直線y=2x+3都經(jīng)過y軸上同一點,求這條拋物線的表達式;
(3)如圖,頂點在第一象限的拋物線y=﹣a(x﹣1)2+4a與它的關(guān)聯(lián)直線交于點A,B(點A在點B的左側(cè)),與x軸負半軸交于點C,連結(jié)AC、BC.當△ABC為直角三角形時,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線AB與拋物線y=ax2+bx交于點A(6,0)和點B(1,﹣5).
(1)求這條拋物線的表達式和直線AB的表達式;
(2)如果點C在直線AB上,且∠BOC的正切值是,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P點是某海域內(nèi)的一座燈塔的位置,船A停泊在燈塔P的南偏東53°方向的50海里處,船B位于船A的正西方向且與燈塔P相距20海里.(本題參考數(shù)據(jù)sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)
(1)試問船B在燈塔P的什么方向?
(2)求兩船相距多少海里?(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算
(1)x2+6x﹣2=0(配方法)
(2)已知關(guān)于x的方程2x2+(k﹣2)x+1=0有兩個相等的實數(shù)根,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖①,在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由B出發(fā)沿BA方向向點A勻速運動,速度為1cm/s;點Q由A出發(fā)沿AC方向向點C勻速運動,速度為2cm/s;連接PQ.若設(shè)運動的時間為t(s)(0<t<4),解答下列問題:
(1)當t為何值時,PQ∥BC;
(2)設(shè)△AQP的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;
(3)是否存在某一時刻t,使線段PQ恰好把Rt△ACB的周長和面積同時平分?若存在,求出此時t的值;若不存在,說明理由;
(4)如圖②,連接PC,并把△PQC沿QC翻折,得到四邊形PQP′C,那么是否存在某一時刻t,使四邊形PQP′C為菱形?若存在,求出此時菱形的邊長;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在的正方形方格中,每個小正方形的邊長都為1,頂點都在網(wǎng)格線交點處的三角形, 是一個格點三角形.
在圖中,請判斷與是否相似,并說明理由;
在圖中,以O為位似中心,再畫一個格點三角形,使它與的位似比為2:1
在圖中,請畫出所有滿足條件的格點三角形,它與相似,且有一條公共邊和一個公共角.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com