【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點,與正比例函數(shù)的圖象交于點,點軸的正半軸上,且點的橫坐標(biāo)為,過點軸的垂線,分別交一次函數(shù)的圖象于點,交正比例函數(shù)的圖象于點

1)求點的坐標(biāo);

2)當(dāng)為何值時,

3)連接、,于點,已知,在討論的面積與面積的大小問題時,嘉嘉認(rèn)為,淇淇認(rèn)為,請你作為小法官,幫助他們兩人評判,誰的說法正確.

【答案】1)點C的坐標(biāo)為;(2)當(dāng)時,;(3)淇淇的說法正確.理由見解析

【解析】

解:(1)聯(lián)立一次函數(shù)和正比例函數(shù),

可得,解得,

∴點C的坐標(biāo)為;

2)∵一次函數(shù)的圖象與y軸的交點為A

∴點A的坐標(biāo)為,即,

∵點C的坐標(biāo)為,

,

∵點D的橫坐標(biāo)為m,且點D在正比例函數(shù)的圖象上,

∴可設(shè)點D的坐標(biāo)為,則點E的坐標(biāo)為,

,

∵當(dāng)時,不存在,

,

∴點CDE的距離為,

,解得, (舍去),

∴當(dāng)時,;

3)淇淇的說法正確.

理由:∵,

∴點FOC的延長線上,

,

,

,

∴淇淇的說法正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一把直尺,的直角三角板和光盤如圖擺放,角與直尺交點,,則光盤的直徑是( )

A. 3 B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①是甘肅省博物館的鎮(zhèn)館之寶——銅奔馬,又稱馬踏飛燕,于196910月出土于武威市的雷臺漢墓,198310月被國家旅游局確定為中國旅游標(biāo)志,在很多旅游城市的廣場上都有馬踏飛燕雕塑,某學(xué)習(xí)小組把測量本城市廣場的馬踏飛燕雕塑(圖②)最高點離地面的高度作為一次課題活動,同學(xué)們制定了測量方案,并完成了實地測量,測得結(jié)果如下表:

課題

測量馬踏飛燕雕塑最高點離地面的高度

測量示意圖

如圖,雕塑的最高點到地面的高度為,在測點用儀器測得點的仰角為,前進(jìn)一段距離到達(dá)測點,再用該儀器測得點的仰角為,且點,,,均在同一豎直平面內(nèi),點,,在同一條直線上.

測量數(shù)據(jù)

的度數(shù)

的度數(shù)

的長度

儀器)的高度

5

請你根據(jù)上表中的測量數(shù)據(jù),幫助該小組求出馬踏飛燕雕塑最高點離地面的高度(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】房山某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個統(tǒng)計圖.請根據(jù)下面兩個不完整的統(tǒng)計圖回答以下問題:

(1)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;

(2)補全兩幅統(tǒng)計圖;

(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學(xué)生中大約有多少人選擇“小組合作學(xué)習(xí)”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,過點B的直線與拋物線的另一個交點為D,與拋物線的對稱軸交于點E,與y軸交于點F,且OBE的面積為

1)求拋物線的解析式;

2)設(shè)P為已知拋物線上的任意一點,當(dāng)ACP的面積等于ACB的面積時,求點P的坐標(biāo);

3)點Q0,m)是y軸上的動點,連接AQ、BQ,當(dāng)∠AQB為鈍角時,則m的取值范圍是   .(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸交于點,與軸交于點.點是該直線上不同于的點,且

1)寫出、兩點的坐標(biāo);

2)過動點且垂直于軸的直線與直線交于點,若點不在線段上,求的取值范圍;

3)若直線與直線所夾銳角為,請直接寫出直線的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yax2ax2aa為常數(shù)且不等于0)與x軸的交點為AB兩點,且A點在B的右側(cè).

1)當(dāng)拋物線經(jīng)過點(38),求a的值;

2)求AB兩點的坐標(biāo);

3)若拋物線的頂點為M,且點Mx軸的距離等于AB3倍,求拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)“京津冀生態(tài)建設(shè)協(xié)同發(fā)展”,我區(qū)某街道要增大綠化面積,決定從備選的五種樹中選一種進(jìn)行栽種.為了更好的了解民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)走訪了部分居民,進(jìn)行“我最喜歡的一種樹”的調(diào)查活動(每人選其中一種樹),將調(diào)查結(jié)果整理后,繪制出下面兩個不完整的統(tǒng)計圖.

 

請根據(jù)所給信息回答問題:

1)這次參與調(diào)查的居民人數(shù)為________;

2)將條形統(tǒng)計圖補充完整;

3)扇形統(tǒng)計圖中,________;“白蠟”所在扇形的圓心角度數(shù)為________;

4)已知該街道轄區(qū)內(nèi)現(xiàn)在居民8萬人,請你估計這8萬人中最喜歡“銀杏”的有多少人?

查看答案和解析>>

同步練習(xí)冊答案