【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點,與正比例函數(shù)的圖象交于點,點在軸的正半軸上,且點的橫坐標(biāo)為,過點作軸的垂線,分別交一次函數(shù)的圖象于點,交正比例函數(shù)的圖象于點.
(1)求點的坐標(biāo);
(2)當(dāng)為何值時,;
(3)連接、,交于點,已知,在討論的面積與面積的大小問題時,嘉嘉認(rèn)為,淇淇認(rèn)為,請你作為小法官,幫助他們兩人評判,誰的說法正確.
【答案】(1)點C的坐標(biāo)為;(2)當(dāng)時,;(3)淇淇的說法正確.理由見解析
【解析】
解:(1)聯(lián)立一次函數(shù)和正比例函數(shù),
可得,解得,
∴點C的坐標(biāo)為;
(2)∵一次函數(shù)的圖象與y軸的交點為A,
∴點A的坐標(biāo)為,即,
∵點C的坐標(biāo)為,
∴,
∵點D的橫坐標(biāo)為m,且點D在正比例函數(shù)的圖象上,
∴可設(shè)點D的坐標(biāo)為,則點E的坐標(biāo)為,
∴,
∵當(dāng)時,不存在,
∴,
∴點C到DE的距離為,
∴,解得, (舍去),
∴當(dāng)時,;
(3)淇淇的說法正確.
理由:∵,
∴點F在OC的延長線上,
∴,
∵,
∴,
∴,
∴,
∴淇淇的說法正確.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①是甘肅省博物館的鎮(zhèn)館之寶——銅奔馬,又稱“馬踏飛燕”,于1969年10月出土于武威市的雷臺漢墓,1983年10月被國家旅游局確定為中國旅游標(biāo)志,在很多旅游城市的廣場上都有“馬踏飛燕”雕塑,某學(xué)習(xí)小組把測量本城市廣場的“馬踏飛燕”雕塑(圖②)最高點離地面的高度作為一次課題活動,同學(xué)們制定了測量方案,并完成了實地測量,測得結(jié)果如下表:
課題 | 測量“馬踏飛燕”雕塑最高點離地面的高度 | |||
測量示意圖 | 如圖,雕塑的最高點到地面的高度為,在測點用儀器測得點的仰角為,前進(jìn)一段距離到達(dá)測點,再用該儀器測得點的仰角為,且點,,,,,均在同一豎直平面內(nèi),點,,在同一條直線上. | |||
測量數(shù)據(jù) | 的度數(shù) | 的度數(shù) | 的長度 | 儀器()的高度 |
5米 | 米 |
請你根據(jù)上表中的測量數(shù)據(jù),幫助該小組求出“馬踏飛燕”雕塑最高點離地面的高度(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】房山某中學(xué)改革學(xué)生的學(xué)習(xí)模式,變“老師要學(xué)生學(xué)習(xí)”為“學(xué)生自主學(xué)習(xí)”,培養(yǎng)了學(xué)生自主學(xué)習(xí)的能力.小華與小明同學(xué)就“最喜歡哪種學(xué)習(xí)方式”隨機(jī)調(diào)查了他們周圍的一些同學(xué),根據(jù)收集到的數(shù)據(jù)繪制了以下的兩個統(tǒng)計圖.請根據(jù)下面兩個不完整的統(tǒng)計圖回答以下問題:
(1)這次抽樣調(diào)查中,共調(diào)查了 名學(xué)生;
(2)補全兩幅統(tǒng)計圖;
(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校1000名學(xué)生中大約有多少人選擇“小組合作學(xué)習(xí)”?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,過點B的直線與拋物線的另一個交點為D,與拋物線的對稱軸交于點E,與y軸交于點F,且,△OBE的面積為.
(1)求拋物線的解析式;
(2)設(shè)P為已知拋物線上的任意一點,當(dāng)△ACP的面積等于△ACB的面積時,求點P的坐標(biāo);
(3)點Q(0,m)是y軸上的動點,連接AQ、BQ,當(dāng)∠AQB為鈍角時,則m的取值范圍是 .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸交于點,與軸交于點.點是該直線上不同于的點,且.
(1)寫出、兩點的坐標(biāo);
(2)過動點且垂直于軸的直線與直線交于點,若點不在線段上,求的取值范圍;
(3)若直線與直線所夾銳角為,請直接寫出直線的函數(shù)解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣ax﹣2a(a為常數(shù)且不等于0)與x軸的交點為A,B兩點,且A點在B的右側(cè).
(1)當(dāng)拋物線經(jīng)過點(3,8),求a的值;
(2)求A、B兩點的坐標(biāo);
(3)若拋物線的頂點為M,且點M到x軸的距離等于AB的3倍,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為積極響應(yīng)“京津冀生態(tài)建設(shè)協(xié)同發(fā)展”,我區(qū)某街道要增大綠化面積,決定從備選的五種樹中選一種進(jìn)行栽種.為了更好的了解民意,工作人員在街道轄區(qū)范圍內(nèi)隨機(jī)走訪了部分居民,進(jìn)行“我最喜歡的一種樹”的調(diào)查活動(每人選其中一種樹),將調(diào)查結(jié)果整理后,繪制出下面兩個不完整的統(tǒng)計圖.
請根據(jù)所給信息回答問題:
(1)這次參與調(diào)查的居民人數(shù)為________;
(2)將條形統(tǒng)計圖補充完整;
(3)扇形統(tǒng)計圖中,________;“白蠟”所在扇形的圓心角度數(shù)為________;
(4)已知該街道轄區(qū)內(nèi)現(xiàn)在居民8萬人,請你估計這8萬人中最喜歡“銀杏”的有多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com