【題目】如圖,AB⊙O的切線,A為切點(diǎn),AC⊙O的弦,過(guò)OOHAC于點(diǎn)H.若OH3,AB8,BO10.求:

(1)⊙O的半徑;

(2)AC的長(zhǎng)(結(jié)果保留根號(hào))

【答案】(1)OA=6;(2)

【解析】

(1)根據(jù)切線的性質(zhì)由AB⊙O的切線得到∠OAB=90°,然后根據(jù)勾股定理可計(jì)算出OA=6;
(2)根據(jù)垂徑定理由OH⊥ACAH=HC,然后根據(jù)勾股定理計(jì)算出AH,則由AC=2AH求解.

解:(1)∵AB是⊙O的切線,∴∠OAB=900,

       ∴AO2=OB2-AB2,∴ OA=6.

  (2)∵OH⊥AC,∴AH2=AO2-OH2,AH=CH,

∴AH2=36-9=27,∴AH=

       ∴AC=2AH=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:(1)x2﹣4x+1=0 (2)(x﹣2)2=3(x﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中菱形ABCD的頂點(diǎn)Ay軸上,且點(diǎn)A坐標(biāo)為(0,4),BCx軸正半軸上,點(diǎn)CB點(diǎn)右側(cè)反比例函數(shù)x>0)的圖象分別交邊AD,CDE,F連結(jié)BF,已知,BC=k,AE=CF,S四邊形ABFD=20,k= _________

[Failed to download image : http://192.168.0.10:8086/QBM/2019/1/17/2120855162306560/2123559773659136/STEM/85e8312ee4314e6b84d61ad733d78d14.png]

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名徒步愛(ài)好者來(lái)衡陽(yáng)旅行,他從賓館C出發(fā),沿北偏東30°的方向行走2000米到達(dá)石鼓書(shū)院A處,參觀后又從A處沿正南方向行走一段距離,到達(dá)位于賓館南偏東45°方向的雁峰公園B處,如圖所示.

(1)求這名徒步愛(ài)好者從石鼓書(shū)院走到雁峰公園的途中與賓館之間的最短距離;

(2)若這名徒步愛(ài)好者以100米/分的速度從雁峰公園返回賓館,那么他在15分鐘內(nèi)能否到達(dá)賓館?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于x的方程x2-2m1xm2=0.

1)當(dāng)m取何值時(shí),方程有兩個(gè)實(shí)數(shù)根?

2)為m選取一個(gè)合適的整數(shù),使方程有兩個(gè)不相等的實(shí)數(shù)根,并求這兩個(gè)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】李明準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn),把一根長(zhǎng)40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.

(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?

(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說(shuō)法正確嗎?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀材料:各類(lèi)方程的解法

求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來(lái)解;類(lèi)似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個(gè)一元一次方程來(lái)解.求解分式方程,把它轉(zhuǎn)化為整式方程來(lái)解,由于去分母可能產(chǎn)生增根,所以解分式方程必須檢驗(yàn).各類(lèi)方程的解法不盡相同,但是它們有一個(gè)共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.

轉(zhuǎn)化的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過(guò)因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0x2+x-2=0,可得方程x3+x2-2x=0的解.

(1)問(wèn)題:方程x3+x2-2x=0的解是x1=0,x2= ,x3=

(2)拓展:用轉(zhuǎn)化思想求方程的解;

(3)應(yīng)用:如圖,已知矩形草坪ABCD的長(zhǎng)AD=8m,寬AB=3m,小華把一根長(zhǎng)為10m的繩子的一端固定在點(diǎn)B,沿草坪邊沿BA,AD走到點(diǎn)P處,把長(zhǎng)繩PB段拉直并固定在點(diǎn)P,然后沿草坪邊沿PD、DC走到點(diǎn)C處,把長(zhǎng)繩剩下的一段拉直,長(zhǎng)繩的另一端恰好落在點(diǎn)C.求AP的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】上周六上午點(diǎn),小穎同爸爸媽媽一起從西安出發(fā)回安康看望姥姥,途中他們?cè)谝粋(gè)服務(wù)區(qū)休息了半小時(shí),然后直達(dá)姥姥家,如圖,是小穎一家這次行程中距姥姥家的距離(千米)與他們路途所用的時(shí)間(時(shí))之間的函數(shù)圖象,請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:

(1)求直線所對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)已知小穎一家出服務(wù)區(qū)后,行駛分鐘時(shí),距姥姥家還有千米,問(wèn)小穎一家當(dāng)天幾點(diǎn)到達(dá)姥姥家?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,CD是邊AB上的中線,∠B是銳角,sinB=,tanA=,AC=,

(1)求∠B 的度數(shù)和 AB 的長(zhǎng).

(2)求 tan∠CDB 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案