【題目】在△ABC中,∠ABC=90°,AB=BC=4,點(diǎn)M是線段BC的中點(diǎn),點(diǎn)N在射線MB上,連接AN,平移△ABN,使點(diǎn)N移動(dòng)到點(diǎn)M,得到△DEM(點(diǎn)D與點(diǎn)A對(duì)應(yīng),點(diǎn)E與點(diǎn)B對(duì)應(yīng)),DM交AC于點(diǎn)P.
(1)若點(diǎn)N是線段MB的中點(diǎn),如圖1.
①依題意補(bǔ)全圖1;
②求DP的長(zhǎng);
(2)若點(diǎn)N在線段MB的延長(zhǎng)線上,射線DM與射線AB交于點(diǎn)Q,若MQ=DP,求CE的長(zhǎng).
【答案】(1)①補(bǔ)全的圖形如圖1所示,見解析;②;(2)
【解析】
(1)利用平移的性質(zhì)畫出圖形,再利用相似得出比例,即可求出線段DP的長(zhǎng).
(2)根據(jù)條件MQ=DP,利用平行四邊形的性質(zhì)和相似三角形的性質(zhì),求出BN的長(zhǎng)即可解決.
(1)①如圖1,補(bǔ)全圖形
②連接AD,如圖1.
在Rt△ABN中,
∵∠B=90°,AB=4,BN=1,
∴AN=
∵線段AN平移得到線段DM,
∴DM=AN=,
AD=NM=1,AD∥MC,
∴△ADP∽△CMP.
∴
∴DP=;
(2)連接NQ,
由平移知:AN∥DM,且AN=DM.
∵MQ=DP,
∴PQ=DM.
∴AN∥PQ,且AN=PQ.
∴四邊形ANQP是平行四邊形.
∴NQ∥AP.
∴∠BQN=∠BAC=45°.
又∵∠NBQ=∠ABC=90°,
∴BN=BQ.
∵AN∥MQ,
∴.
又∵M是BC的中點(diǎn),且AB=BC=4,
∴.
∴NB=2(負(fù)數(shù)舍去).
∴ME=BN=2.
∴CE=22
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,BD為⊙O的直徑,點(diǎn)A、C在⊙O上并位于BD的兩側(cè),∠ABC=45°,連結(jié)CD、OA并延長(zhǎng)交于點(diǎn)F,過點(diǎn)C作⊙O的切線交BD延長(zhǎng)線于點(diǎn)E.
(1)求證:∠F=∠ECF;
(2)當(dāng)DF=6,tan∠EBC=,求AF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中點(diǎn)A的坐標(biāo)為(﹣1,1),點(diǎn)B的坐標(biāo)為(3,3),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段AB交y軸于點(diǎn)E.
(1)求點(diǎn)E的坐標(biāo);
(2)求拋物線的函數(shù)解析式;
(3)點(diǎn)F為線段OB上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)O、B重合),直線EF與拋物線交于M、N兩點(diǎn)(點(diǎn)N在y軸右側(cè)),連接ON、BN,當(dāng)四邊形ABNO的面積最大時(shí),求點(diǎn)N的坐標(biāo)并求出四邊形ABNO面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是菱形ABCD的對(duì)角線.
(1)請(qǐng)用直尺和圓規(guī)作AB的垂直平分線EF,垂足為點(diǎn)E,交AD于點(diǎn)F;(不要求寫作法,保留作圖痕跡)
(2)在(1)的條件下,連接BF,若∠CBD=75°,求∠DBF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是中國(guó)古代數(shù)學(xué)專著在數(shù)學(xué)上有其獨(dú)到的成就,不僅最早提到了分?jǐn)?shù)問題,首先記錄了“盈不足”等問題.如有一道闡述“盈不足”的問題,原文如下:今有共買雞,人出九,盈十一;人出六,不足十六.問人數(shù)、雞價(jià)各幾何?譯文為:現(xiàn)有若干人合伙出錢買雞,如果每人出9文錢,就會(huì)多11文錢;如果每人出6文錢又會(huì)缺16文錢,問買雞的人數(shù)、雞的價(jià)格各是多少?通過計(jì)算可得買雞的人數(shù)是( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80m,DE=10m,求障礙物B,C兩點(diǎn)間的距離(結(jié)果精確到0.1m)(參考數(shù)據(jù):≈1.414,≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=BC,P為△ABC內(nèi)部一點(diǎn),且∠APB=∠BPC=135°
(1)求證:△PAB∽△PBC
(2)求證:PA=2PC
(3)若點(diǎn)P到三角形的邊AB,BC,CA的距離分別為h1,h2,h3,求證h12=h2·h3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購(gòu)進(jìn)甲種玩具的件數(shù)與用150元購(gòu)進(jìn)乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?
(2)商場(chǎng)計(jì)劃購(gòu)進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場(chǎng)決定此次進(jìn)貨的總資金不超過1000元,求商場(chǎng)共有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC中,AB=AC,點(diǎn)F在邊BC上
(1)如圖1,AF=BF,求證:AB2=BFBC;
(2)如圖2,FC=2BF,點(diǎn)E、M在直線AB上,EF∥AC,cosB=n,且FM2=MEMB
①若M在邊AB上,求的值(用含n的式子表示);
②若M在BA的延長(zhǎng)線上時(shí),直接寫出n的范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com