【題目】如圖,Rt△ABC中,∠ACB=90°,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的A處,若AO=OB=2,則陰影部分面積為( )
A. B. C. D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD,F(xiàn)為CD上一點(diǎn),∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知長(zhǎng)方形ABCD,點(diǎn)E在線段AD上,將沿直線BE翻折后,點(diǎn)A落在線段CD上的點(diǎn)F.如果的周長(zhǎng)為12,的周長(zhǎng)為24,那么FC長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】高斯上小學(xué)時(shí),有一次數(shù)學(xué)老師讓同學(xué)們計(jì)算“從1到100這100個(gè)正整數(shù)的和”.許多同學(xué)都采用了依次累加的計(jì)算方法,計(jì)算起來非常繁瑣,且易出錯(cuò).聰明的小高斯經(jīng)過探索后,給出了下面漂亮的解答過程.
解:設(shè)S=1+2+3+…+100 ①
則S=100+99+98+…+1 ②
①+②,得(即左右兩邊分別相加):
2S=(1+100)+(2+99)+(3+98)+…+(100+1),
=,
=100×101,
所以,S=③,
所以,1+2+3+…+100=5050.
后來人們將小高斯的這種解答方法概括為“倒序相加法”.請(qǐng)你利用“倒序相加法”解答下面的問題.
(1)計(jì)算:1+2+3+…+101;
(2)請(qǐng)你觀察上面解答過程中的③式及你運(yùn)算過程中出現(xiàn)的類似③式,猜想:1+2+3+…+n= ;
(3)至少用兩種方法計(jì)算:1001+1002+…+2000.
方法1:
方法2:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,點(diǎn)E是BC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接BF.
(1)求證:△ABE≌△FCE;
(2)若AF=AD,求證:四邊形ABFC是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y=的圖象與雙曲線y=(k≠0,x>0)相交于點(diǎn)A(3,m)和點(diǎn)B.
(1)求雙曲線的解析式及點(diǎn)B的坐標(biāo);
(2)若點(diǎn)P在y軸上,連接PA,PB,求當(dāng)PA+PB的值最小時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1所示的是帶支架功能的某品牌手機(jī)殼,將其側(cè)面抽象為如圖2所示的幾何圖形,已知AB=5cm,∠BAC=60°,∠C=45°,則AC的長(zhǎng)(≈1.732,結(jié)果精確到0.1cm)為( )
A. 3.4cm B. 4.6cm C. 5.8cm D. 6.8cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-2,1),B(-1,4),C(-3,2).
(1)畫出△ABC關(guān)于點(diǎn)B成中心對(duì)稱的圖形△A1BC1;
(2)以原點(diǎn)O為位似中心,相似比為1∶2,在y軸的左側(cè),畫出△ABC放大后的圖形△A2B2C2,并直接寫出點(diǎn)C2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為4,點(diǎn)E、F分別在邊AB、BC上,且AE=BF=1,CE、DF相交于點(diǎn)O,下列結(jié)論:
①∠DOC=90°,②OC=OE,③tan∠OCD=,④△COD的面積等于四邊形BEOF的面積,正確的有 ( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com