【題目】已知:如圖,在ABCD中,點(diǎn)EBC的中點(diǎn),連接AE并延長(zhǎng)交DC的延長(zhǎng)線于點(diǎn)F,連接BF

(1)求證:△ABE≌△FCE;

(2)AFAD,求證:四邊形ABFC是矩形.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】

1)根據(jù)平行四邊形性質(zhì)得出ABDC,推出∠1=∠2,根據(jù)AAS證兩三角形全等即可;

2)根據(jù)全等得出ABCF,根據(jù)ABCF得出平行四邊形ABFC,推出BCAF,根據(jù)矩形的判定推出即可.

(1)如圖.

∵四邊形ABCD是平行四邊形,

ABDC ABDF

∴∠1=∠2,

∵點(diǎn)EBC的中點(diǎn),

BECE

ABEFCE中,

,

∴△ABE≌△FCE(AAS)

(2)∵△ABE≌△FCE,

ABFC

ABFC,

∴四邊形ABFC是平行四邊形,

ADBC,

AFAD

AFBC,

∴四邊形ABFC是矩形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y1=x+12+1y2=ax423交于點(diǎn)A1,3),過(guò)點(diǎn)Ax軸的平行線,分別交兩條拋物線于B、C兩點(diǎn),且DE分別為頂點(diǎn).則下列結(jié)論:①a=;AC=AE③△ABD是等腰直角三角形;④當(dāng)x1時(shí),y1y2  其中正確結(jié)論的個(gè)數(shù)是( )

A. 1個(gè)B2個(gè)C3個(gè)D4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,MA=MC,MB=MD,以AB為直徑的O過(guò)點(diǎn)M且與DC延長(zhǎng)線相切于點(diǎn)E.

(1)求證:四邊形ABCD是菱形;

(2)若AB=4,求的長(zhǎng)(結(jié)果請(qǐng)保留π)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩根木條,一根長(zhǎng)20cm,另一根長(zhǎng)24cm,將它們一端重合且放在同一條直線上,此時(shí)兩根木條的中點(diǎn)之間的距離為(  )

A. 2cm B. 4cm C. 2cm22cm D. 4cm44cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ADABC的中線,AEBC,BEAD于點(diǎn)F,且AF=DF.

(1)求證:AFEODFB;

(2)求證:四邊形ADCE是平行四邊形;

(3)當(dāng)AB、AC之間滿(mǎn)足什么條件時(shí),四邊形ADCE是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,ACB=90°,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的A,AO=OB=2,則陰影部分面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖反映的過(guò)程是小明從家去菜地澆水,又去玉米地鋤草,然后回家.其中x表示時(shí)間,y表示小明離他家的距離.根據(jù)圖象回答下列問(wèn)題:

菜地離小明家多遠(yuǎn)?小明走到菜地用了多少時(shí)間?

小明給菜地澆水用了多少時(shí)間?

玉米地離菜地、小明家多遠(yuǎn)?小明從玉米地走回家平均速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果∠α和∠β互補(bǔ),且∠α<∠β,則下列表示∠α的余角的式子中:①90°﹣∠α;②∠β90°;③(∠α+β);④(∠β﹣∠α)其中正確的有( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為2的菱形ABCD中,∠A=60,點(diǎn)M是邊AB上一點(diǎn),點(diǎn)N是邊BC上一點(diǎn),且∠ADM=15,∠MDN=90,則點(diǎn)BDN的距離為( )

A. B. C. D. 2

查看答案和解析>>

同步練習(xí)冊(cè)答案