【題目】一組數(shù)據(jù)23,13,54,這組數(shù)據(jù)的眾數(shù)是___________

【答案】3

【解析】

根據(jù)眾數(shù)的概念即可得到結(jié)果.

解:在這組數(shù)據(jù)中3出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則這組數(shù)據(jù)的眾數(shù)是3;
故答案為:3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋擲一枚質(zhì)地均勻、六個面上分別刻有點數(shù)1~6的正方體骰子2次,則向上一面的點數(shù)之和為10”是(

A. 必然事件B. 不可能事件C. 確定事件D. 隨機(jī)事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yax2bxc經(jīng)過ABC的三個頂點,與y軸相交于(0, ),點A坐標(biāo)為(12),點B是點A關(guān)于y軸的對稱點,點Cx軸的正半軸上.

1求該拋物線的函數(shù)解析式;

2F為線段AC上一動點,過點FFEx軸,FGy軸,垂足分別為點EG,當(dāng)四邊形OEFG為正方形時,求出點F的坐標(biāo);

32中的正方形OEFG沿OC向右平移,記平移中的正方形OEFG為正方形DEFG,當(dāng)點E和點C重合時停止運(yùn)動,設(shè)平移的距離為t,正方形的邊EFAC交于點MDG所在的直線與AC交于點N,連接DM,是否存在這樣的t,使DMN是等腰三角形?若存在,求t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位急需用車,但不準(zhǔn)備買車,他們準(zhǔn)備和一個體車主或一國營出租車公司中的一家簽訂合同,設(shè)汽車每月行駛x km,應(yīng)付給個體車主的月租費(fèi)是元,應(yīng)付給國營出租車公司的月租費(fèi)是元, , 分別與之間的函數(shù)關(guān)系的圖象(兩條射線)如圖所示,觀察圖象,回答下列問題.

(1)分別寫出 之間的函數(shù)關(guān)系式;

(2)每月行駛的路程在什么范圍內(nèi)時,租國營公司的車合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在數(shù)學(xué)活動課上,將邊長為3的兩個正方形放置在直線l上,如圖a,他連接AD、CF,經(jīng)測量發(fā)現(xiàn)AD=CF

1)他將正方形ODEFO點逆時針針旋轉(zhuǎn)一定的角度,如圖b,試判斷ADCF還相等嗎?說明理由.

2)他將正方形ODEFO點逆時針旋轉(zhuǎn),使點E旋轉(zhuǎn)至直線l上,如圖c,請求出CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)軸是一個非常重要的數(shù)學(xué)工具,它使數(shù)和數(shù)軸上的點建立起對應(yīng)關(guān)系,揭示了數(shù)與點之間的內(nèi)在聯(lián)系,它是“數(shù)形結(jié)合”的基礎(chǔ)。結(jié)合數(shù)軸與絕對值的知識回答下列問題:

(1)數(shù)軸上表示1和4的兩點之間的距離是______;表示-3和2的兩點之間的距離是______;

表示數(shù)a和-2的兩點之間的距離是3,那么a________;一般地,數(shù)軸上表示數(shù)a和數(shù)b的兩點之間的距離等于__________.

(2)若數(shù)軸上表示數(shù)a的點位于-4與2之間,則_______.

(3)是否存在數(shù)a,使代數(shù)式的值最。咳绻嬖,請寫出數(shù)a______,此時代數(shù)式的最小值是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A-1,3)關(guān)于y軸對稱點的坐標(biāo)是()

A. 13B. -1,-3C. 1,-3D. -3,1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:

問題:如圖1,在△中,點的中點,求證: 小明提供了他研究這個問題的思路:從點的中點出發(fā),可以構(gòu)造以、為鄰邊的平行四邊形,結(jié)合平行四邊形的性質(zhì)以及三角形兩邊之和大于第三邊的性質(zhì)便可解決這個問題.請結(jié)合小明研究問題的思路,解決下列問題:

(1)完成上面問題的解答;

(2)如果在圖1中,∠=60°,延長,使得,延長,使得,連結(jié),如圖2. 請猜想線段與線段之間的數(shù)量關(guān)系.并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACEFAB的中點,DEAB交于點G,EFAC交于點H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:

EFAC四邊形ADFE為菱形;AD=4AGFH=BD;其中正確結(jié)論的是( )

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

同步練習(xí)冊答案