【題目】某單位急需用車,但不準(zhǔn)備買車,他們準(zhǔn)備和一個(gè)體車主或一國營出租車公司中的一家簽訂合同,設(shè)汽車每月行駛x km,應(yīng)付給個(gè)體車主的月租費(fèi)是元,應(yīng)付給國營出租車公司的月租費(fèi)是元, , 分別與之間的函數(shù)關(guān)系的圖象(兩條射線)如圖所示,觀察圖象,回答下列問題.

(1)分別寫出, 之間的函數(shù)關(guān)系式;

(2)每月行駛的路程在什么范圍內(nèi)時(shí),租國營公司的車合算?

【答案】(1);

(2)當(dāng)行駛的路程時(shí),租國營公司的車合算

【解析】試題分析:(1根據(jù)函數(shù)圖象判斷出y1是一次函數(shù)、y2是正比例函數(shù),點(diǎn)(2000,3000)y1圖象上,點(diǎn)(2000,4000)y2圖象上,然后利用待定系數(shù)法確定出解析式(2)要求解租哪種車合算,可先算出圖象中兩個(gè)解析式的交點(diǎn),該交點(diǎn)是兩類車費(fèi)用一樣的行駛千米數(shù),故令y1=y2,聯(lián)立兩解析式后可得到此時(shí)x的值;

試題解析:(1由圖象和已知條件,設(shè)y1=kx+1000(k≠0),y2=mx(m≠0)

(2000,3000)代入y1=kx+1000,解得k=1,y1=x+1000(x≥0)

(2000,4000)代入y2=mx,解得m=2,y1=2x(x≥0)

(2)y2=y1,y2=2xy1=x+1000聯(lián)立,解得x=1000,即當(dāng)x=1000千米時(shí),y2=y1

由圖象可得:當(dāng)0≤x1000時(shí),租國營出租車公司的車合算;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一根40cm的金屬棒,欲將其截成x7cm的小段和y9cm的小段,剩余部分作廢料處理,若使廢料最少則正整數(shù)x,y應(yīng)分別為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某次數(shù)學(xué)測驗(yàn),共16個(gè)選擇題,評分標(biāo)準(zhǔn)為:;對一題給6分,錯(cuò)一題扣2分,不答不給分。某個(gè)學(xué)生有1題未答,他想自己的分?jǐn)?shù)不低于70分,他至少要對多少題?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把拋物線y=﹣x2向左平移1個(gè)單位,然后向上平移3個(gè)單位,則平移后拋物線的解析式為( 。

A. y=﹣(x﹣1)2﹣3 B. y=﹣(x+1)2﹣3 C. y=﹣(x﹣1)2+3 D. y=﹣(x+1)2+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列命題中,正確的是( 。

A. 平行四邊形的對角線相等

B. 矩形的對角線互相垂直

C. 菱形的對角線互相垂直且平分

D. 對角線相等的四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=2x+4

(1)在如圖所示的平面直角坐標(biāo)系中,畫出函數(shù)的圖象;

2)求圖象與x軸的交點(diǎn)A的坐標(biāo),與y軸交點(diǎn)B的坐標(biāo);

(3)在(2)的條件下,求出△AOB的面積;

(4)利用圖象直接寫出:當(dāng)y<0時(shí),x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)2,3,1,3,5,4,這組數(shù)據(jù)的眾數(shù)是___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】試解答下列問題:

(1)在圖1我們稱之為“8字形”,請直接寫出∠A、∠B、∠C、∠D之間的數(shù)量關(guān)系:

(2)仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù)是 個(gè);

(3) 在圖2中,若∠D=40°,∠B=36°,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于MN.試求∠P的度數(shù);

(4)如果圖2中∠D和∠B為任意角時(shí),其他條件不變,試寫出∠B與∠P、∠D之間數(shù)量關(guān)系

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視機(jī)廠生產(chǎn)甲、乙、丙三種不同型號的電視機(jī),出廠價(jià)分別為1200元,2000元,2200元.某商場同時(shí)從該廠購進(jìn)其中兩種不同型號的電視機(jī)共50臺,正好用去80000元.

(1)該商場有幾種進(jìn)貨方案?(寫出演算步驟)

(2)若該商場銷售甲、乙、丙種電視機(jī)每臺可分別獲利200元,250元,300元,如何進(jìn)貨可使銷售時(shí)獲利最大?最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案