【題目】如圖,分別以直角△ABC的斜邊AB,直角邊AC為邊向△ABC外作等邊△ABD和等邊△ACE,F為AB的中點,DE與AB交于點G,EF與AC交于點H,∠ACB=90°,∠BAC=30°.給出如下結(jié)論:
①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④FH=BD;其中正確結(jié)論的是( )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
【答案】C
【解析】試題分析:∵△ACE是等邊三角形,
∴∠EAC=60°,AE=AC,
∵∠BAC=30°,
∴∠FAE=∠ACB=90°,AB=2BC,
∵F為AB的中點,
∴AB=2AF,
∴BC=AF,
∴△ABC≌△EFA,
∴FE=AB,
∴∠AEF=∠BAC=30°,
∴EF⊥AC,故①正確,
∵EF⊥AC,∠ACB=90°,
∴HF∥BC,
∵F是AB的中點,
∴HF=BC,
∵BC=AB,AB=BD,
∴HF=BD,故④說法正確;
∵AD=BD,BF=AF,
∴∠DFB=90°,∠BDF=30°,
∵∠FAE=∠BAC+∠CAE=90°,
∴∠DFB=∠EAF,
∵EF⊥AC,
∴∠AEF=30°,
∴∠BDF=∠AEF,
∴△DBF≌△EFA(AAS),
∴AE=DF,
∵FE=AB,
∴四邊形ADFE為平行四邊形,
∵AE≠EF,
∴四邊形ADFE不是菱形;
故②說法不正確;
∴AG=AF,
∴AG=AB,
∵AD=AB,
則AD=4AG,故③說法正確,
故選:C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視機廠生產(chǎn)甲、乙、丙三種不同型號的電視機,出廠價分別為1200元,2000元,2200元.某商場同時從該廠購進(jìn)其中兩種不同型號的電視機共50臺,正好用去80000元.
(1)該商場有幾種進(jìn)貨方案?(寫出演算步驟)
(2)若該商場銷售甲、乙、丙種電視機每臺可分別獲利200元,250元,300元,如何進(jìn)貨可使銷售時獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程(x﹣4)2=2x﹣3化為一般式是( 。
A. x2﹣10x+13=0 B. x2﹣10x+19=0 C. x2﹣6x+13=0 D. x2﹣6x+19=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)甲、乙兩種商品,甲的進(jìn)貨單價比乙的進(jìn)貨單價高20元,已知20個甲商品的進(jìn)貨總價與25個乙商品的進(jìn)貨總價相同.
(1)求甲、乙商品的進(jìn)貨單價;
(2)若甲、乙兩種商品共進(jìn)貨100件,要求兩種商品的進(jìn)貨總價不高于9000元,同時甲商品按進(jìn)價提高10%后的價格銷售,乙商品按進(jìn)價提高25%后的價格銷售,兩種商品全部售完后的銷售總額不低于10480元,問有哪幾種進(jìn)貨方案?
(3)在條件(2)下,并且不再考慮其他因素,若甲、乙兩種商品全部售完,哪種方案利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(-2,y1),(-4,y,2)在函數(shù)y=x2-4x+7的圖象上,那么y1,y2的大小關(guān)系是( )
A. y1>y2 B. y1= y2 C. y1<y2 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市在一次扶貧助殘活動中,共捐款5280000元,將5280000用科學(xué)記數(shù)法表示為( )
A. 5.28×106 B. 5.28×107
C. 52.8×106 D. 0.528×107
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若m是方程x2+x-1=0的根,則2m2+2m+2016的值為( 。
A. 2016 B. 2017 C. 2018 D. 2019
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com