【題目】已知一次函數(shù),二次函數(shù)(其中m>4).
(1)求二次函數(shù)圖象的頂點(diǎn)坐標(biāo)(用含m的代數(shù)式表示);
(2)利用函數(shù)圖象解決下列問題:
①若,求當(dāng)且≤0時,自變量的取值范圍;
②如果滿足且≤0時自變量的取值范圍內(nèi)有且只有一個整數(shù),直接寫出的取值范圍.
【答案】(1);(2)①2<x≤4.②≤m<5.
【解析】試題分析:(1)把y2=x2-mx+4通過配方轉(zhuǎn)化成頂點(diǎn)式即可求得頂點(diǎn)坐標(biāo).
(2)①當(dāng)m=5時,y2=x2-5x+4,畫出函數(shù)的圖象,根據(jù)圖象即可求得自變量x的取值范圍;
②根據(jù)題意結(jié)合圖象可知x=3,把x=3代入y2=x2-mx+4≥0即可求得a的取值;
解:
(1)∵,
∴二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為 .
(2)①當(dāng)時, .
如圖, 因?yàn)?/span>且≤0,由圖象,得
2<x≤4.
②解x2-mx+4≥0得≤m<5
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為3,菱形EFGH的三個頂點(diǎn)E、G、H分別在正方形的邊AB、CD、DA上,AH=1,聯(lián)結(jié)CF.
(1)當(dāng)DG=1時,求證:菱形EFGH為正方形;
(2)設(shè)DG=x,△FCG的面積為y,寫出y關(guān)于x的函數(shù)解析式,并指出x的取值范圍;
(3)當(dāng)DG=時,求∠GHE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】漣水外賣市場競爭激烈,美團(tuán)、餓了么等公司訂單大量增加,某公司負(fù)責(zé)招聘外賣送餐員,具體方案如下:每月不超出750單,每單收入4元;超出750單的部分每單收入m元.
(1)若某“外賣小哥”某月送了500單,收入 元;
(2)若“外賣小哥”每月收入為y(元),每月送單量為x單,y與x之間的關(guān)系如圖所示,求y與x之間的函數(shù)關(guān)系式;
(3)若“外賣小哥”甲和乙在某個月內(nèi)共送單1200單,且甲送單量低于乙送單量,共收入5000元,問:甲、乙送單量各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市在端午節(jié)期間開展優(yōu)惠活動,凡購物者可以通過轉(zhuǎn)動轉(zhuǎn)盤的方式享受折扣優(yōu)惠,本次活動共有兩種方式,方式一:轉(zhuǎn)動轉(zhuǎn)盤甲,指針指向 A區(qū)域時,所購買物品享受9折優(yōu)惠、指針指向其它區(qū)域無優(yōu)惠;方式二: 同時轉(zhuǎn)動轉(zhuǎn)盤甲和轉(zhuǎn)盤乙,若兩個轉(zhuǎn)盤的指針指向每個區(qū)域的字母相同,所購買物品享受8折優(yōu)惠,其它情況無優(yōu)惠.在每個轉(zhuǎn)盤中,指針指向每個區(qū)城的可能性相同(若指針指向分界線,則重新轉(zhuǎn)動轉(zhuǎn)盤)
(1)若顧客選擇方式一,則享受 9 折優(yōu)惠的概率為_______;
(2)若顧客選擇方式二,請用樹狀圖或列表法列出所有可能,并求顧客享受8折優(yōu)惠的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖, 是半圓的直徑,D是半圓上的一個動點(diǎn)(點(diǎn)D不與點(diǎn)A,B 重合),
(1)求證:AC是半圓的切線;
(2)過點(diǎn)O作BD的平行線,交AC于點(diǎn)E,交AD于點(diǎn)F,且EF=4, AD=6, 求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是“作出弧AB所在的圓”的尺規(guī)作圖過程.
已知:弧AB.
求作:弧AB所在的圓.
作法:如圖,
(1)在弧AB上任取三個點(diǎn)D,C,E;
(2)連接DC,EC;
(3)分別作DC和EC的垂直平分線,兩垂直平分線的交點(diǎn)為點(diǎn)O.
(4)以 O為圓心,OC長為半徑作圓,所以⊙O即為所求作的弧AB所在的圓.
請回答:該尺規(guī)作圖的依據(jù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在正方形ABCD中,點(diǎn)E是BC邊上一點(diǎn),且BE:EC=2:1,AE與BD交于點(diǎn)F,則△AFD與四邊形DFEC的面積之比是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線。
(1)求頂點(diǎn)坐標(biāo),對稱軸;
(2)取何值時, 隨的增大而減?
(3)取何值時, =0; 取何值時, >0; 取何值時, <0 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別是BC、CD邊上的點(diǎn),∠EAF=45°.
(1)如圖(1),試判斷EF,BE,DF間的數(shù)量關(guān)系,并說明理由;
(2)如圖(2),若AH⊥EF于點(diǎn)H,試判斷線段AH與AB的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com