【題目】拋物線。
(1)求頂點坐標(biāo),對稱軸;
(2)取何值時, 隨的增大而減?
(3)取何值時, =0; 取何值時, >0; 取何值時, <0 。
【答案】(1)頂點坐標(biāo)為(2,2),對稱軸為直線; (2)當(dāng)時, 隨的增大而減小;
(3)當(dāng)或時, =0; 當(dāng)時, >0; 當(dāng)或時, <0.
【解析】(1)根據(jù)配方法的步驟要求,將拋物線解析式的一般式轉(zhuǎn)化為頂點式,可確定頂點坐標(biāo)和對稱軸;
(2)由對稱性x=-2,拋物線開口向下,結(jié)合圖象,寬為確定函數(shù)的增減性;
(3)判斷函數(shù)值的符合,可以令y=0,解一元二次方程組x,再去根據(jù)拋物線的開口方向,確定函數(shù)值的符合與x的取值范圍的對應(yīng)關(guān)系.
解: .
(1)頂點坐標(biāo)為(2,2),對稱軸為直線;
(2)當(dāng)時, 隨的增大而減;
(3)令y=0,即-2x2+8x-6=0,解得x=1或3,拋物線開口向下,
當(dāng)或時, =0;
當(dāng)時, >0;
當(dāng)或時, <0.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某幼兒園把一筐桔子分給若干個小朋友,若每人3只,那么還剩59只,若每人5只,那么最后一個小朋友分到桔子,但不足4只,試求這筐桔子共有多少只?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點B(6,0)的直線AB與直線OA相交于點A(4,2),動點M沿路線O→A→C運(yùn)動.
(1)求直線AB的解析式.
(2)求△OAC的面積.
(3)當(dāng)△OMC的面積是△OAC的面積的時,求出這時點M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】A、B兩組卡片共5張,A中三張分別寫有數(shù)字2,4,6,B中兩張分別寫有3,5,它們除數(shù)字外沒有任何區(qū)別.
(1)隨機(jī)地從A中抽取一張,求抽到數(shù)字為2的概率;
(2)隨機(jī)地分別從A、B中各抽取一張,請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個游戲規(guī)則:若所選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y= ax2+bx+c上部分點的橫坐標(biāo)x,縱坐標(biāo)y的對應(yīng)值如下表:
x | ... | -3 | -2 | - 1 | 0 | 1 | ... |
y | ... | -6 | 0 | 4 | 6 | 6 | ... |
容易看出,(-2,0)是拋物線與x軸的一個交點,則它與x軸的另一個交點的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明做了如下四個因式分解題,你認(rèn)為小明做得不完整一題是( 。
A. x2y﹣xy2=xy(x﹣y) B. m2﹣2mn+n2=(m﹣n)2
C. a3﹣a=a(a2﹣1) D. ﹣x2+y2=(y+x)(y﹣x)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若點P(a,b)是第二象限內(nèi)的點,則點Q(b,a)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com