【題目】某農(nóng)場要建一個飼養(yǎng)場(矩形ABCD)兩面靠現(xiàn)有墻(AD位置的墻最大可用長度為27米,AB位置的墻最大可用長度為15米),另兩邊用木欄圍成,中間也用木欄隔開,分成兩個場地及一處通道,并在如圖所示的三處各留1米寬的門(不用木欄).建成后木欄總長45米.設飼養(yǎng)場(矩形ABCD)的一邊AB長為x米.


1)飼養(yǎng)場另一邊BC=____米(用含x的代數(shù)式表示).
2)若飼養(yǎng)場的面積為180平方米,求x的值.

【答案】148-3x;(210.

【解析】

1)用(總長+31米的門的寬度)-3x即為所求;
2)由(1)表示飼養(yǎng)場面積計算即可,

1)由題意得:(48-3x)米.
故答案是:(48-3x);
2)由題意得:x48-3x=180
解得x1=6x2=10

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一條公路上順次有A、B、C三地,甲、乙兩車同時從A地出發(fā),分別勻速前往B地、C地,甲車到達B地停留一段時間后原速原路返回,乙車到達C地后立即原速原路返回,乙車比甲車早1小時返回A地,甲、乙兩車各自行駛的路程y(千米)與時間x(時)(從兩車出發(fā)時開始計時)之間的函數(shù)圖象如圖所示.

(1)甲車到達B地停留的時長為   小時.

(2)求甲車返回A地途中yx之間的函數(shù)關系式.

(3)直接寫出兩車在途中相遇時x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,BAC=90°AC=2AB,點DAC的中點.將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個端點分別與AD重合,連接BEEC

試猜想線段BEEC的數(shù)量及位置關系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某服裝店購進一批秋衣,價格為每件30元.物價部門規(guī)定其銷售單價不高于每件60元,經(jīng)市場調查發(fā)現(xiàn):日銷售量y(件)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100.在銷售過程中,每天還要支付其他費用450元.

(1)求出y與x的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)求該服裝店銷售這批秋衣日獲利W(元)與銷售單價x(元)之間的函數(shù)關系式;

(3)當銷售單價為多少元時,該服裝店日獲利最大?最大獲利是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC在平面直角坐標系中的位置如圖所示,其中每個小正方形的邊長為1個單位長度.

1)畫出ABC關于x軸對稱的圖形A1B1C1,

2)寫出點A的對應點A1的坐標;

3)將ABC的橫、縱坐標分別乘以-1,畫出對應的圖形A2B2C2;若Pa,b)為ABC邊上一點,則在A2B2C2中,點P對應的點Q的坐標為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某?萍夹〗M進行野外考察,為了安全地通過一片濕地,他們沿著前進路線鋪了若干塊木塊,構筑出一條臨時道路.木塊對地面的壓強p(Pa)是關于木板面積S(m2)的反比例函數(shù),其圖象如圖所示.

(1)請直接寫出p關于S的函數(shù)表達式;

(2)當木板面積為0.2 m2,壓強是多少Pa?

(3)如果要求壓強不超過6000 Pa,木板的面積至少是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一多邊形草坪,在市政建設設計圖紙上的面積為300cm2,其中一條邊的長度為5cm.經(jīng)測量,這條邊的實際長度為15m,則這塊草坪的實際面積是( 。

A. 100m2 B. 270m2 C. 2700m2 D. 90000m2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)的圖象相交于A、B兩點,一次函數(shù)的圖象與y軸相交于點C,已知點A(4,1)

(1)求反比例函數(shù)的解析式;

(2)連接OB(O是坐標原點),若△BOC的面積為3,求該一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,,…,等分點,連接并延長交于點,連接并延長交于點

求證:;

設平行四邊形的面積是,若,求的值.

查看答案和解析>>

同步練習冊答案