【題目】在一條公路上順次有A、B、C三地,甲、乙兩車同時從A地出發(fā),分別勻速前往B地、C地,甲車到達B地停留一段時間后原速原路返回,乙車到達C地后立即原速原路返回,乙車比甲車早1小時返回A地,甲、乙兩車各自行駛的路程y(千米)與時間x(時)(從兩車出發(fā)時開始計時)之間的函數(shù)圖象如圖所示.

(1)甲車到達B地停留的時長為   小時.

(2)求甲車返回A地途中yx之間的函數(shù)關系式.

(3)直接寫出兩車在途中相遇時x的值.

【答案】(1)3;(2)y=80x﹣240;(3)

【解析】

(1)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得甲車到達B地停留的時長;

(2)根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以求得甲車返回A地途中yx之間的函數(shù)關系式;

(3)根據(jù)題意可以求得兩車在途中相遇時x的值.

(1)由題意可得,

甲車到達B地停留的時長為:7﹣2﹣2=3(小時),

故答案為:3;

(2)設甲車返回A地途中yx之間的函數(shù)關系式是y=kx+b,

,得,

即甲車返回A地途中yx之間的函數(shù)關系式是y=80x﹣240;

(3)由題意可得,

甲車的速度為:160÷2=80千米/時,

乙車的速度為:360÷(7﹣1)=60千米/時,

第一次相遇的時間為:160÷60=h,

設第二次相遇的時間為xh,則(360﹣60x)=160或(360﹣60x)=320﹣(80x﹣240),

解得,x=x=10(舍去),

答:兩車在途中相遇時x的值是

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調查,根據(jù)調查結果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應的圓心角是多少;

(4)如果該校九年級共有1200名學生,請估計選擇以友善為主題的九年級學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題背景:

(1)如圖:在四邊形ABCD中,AB=AD,∠BAD=120°,∠B=ADC=90°E,F分別是BCCD上的點且∠EAF=60°.探究圖中線段BE,EF,FD之間的數(shù)量關系.小王同學探究此問題的方法是,延長FD到點G.使DG=BE連結AG,先證明ABE≌△ADG.再證明________,可得出結論,他的結論應是____.請你按照小王同學的思路寫出完整的證明過程.

實際應用

(2)如圖,在某次軍事演習中,艦艇甲在指揮中心(O處)北偏西30°的A處,艦艇乙在指揮中心南偏東70°B處,且兩艦艇到指揮中心的距離相等接到行動指令后,艦艇甲向正東方向以60海里/小時的速度前進,艦艇乙沿北偏東50°的方向以80海里/小時的速度前進,1.2小時后,指揮中心觀測到甲、乙兩艦艇分別到達E,F處.且兩艦艇之間的夾角為70°,試求此時兩艦艇之間的距離是 海里(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將直角三角板ABC繞直角頂點C逆時針旋轉角度,得到△DCE,其中CEAB交于點F,∠ABC=30°,連接BE,若△BEF為等腰三角形(即有兩內角相等),則旋轉角的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=ax2+4x+c(a≠0)經過點A(3,﹣4)和B(0,2).

(1)求拋物線的表達式和頂點坐標;

(2)將拋物線在A、B之間的部分記為圖象M(含A、B兩點).將圖象M沿直線x=3翻折,得到圖象N.若過點C(9,4)的直線y=kx+b與圖象M、圖象N都相交,且只有兩個交點,求b的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C′處,折痕為EF,若AB=1,BC=2,則△ABE△BC′F的周長之和為(  )

A. 3 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售甲、乙兩種品牌的智能手機,這兩種手機的進價和售價如下表所示:

進價(元/部)

4000

2500

售價(元/部)

4300

3000

該商場計劃購進兩種手機若干部,共需15.5萬元,預計全部銷售后可獲毛利潤共2.1萬元.

(毛利潤=(售價﹣進價)×銷售量)

(1)該商場計劃購進甲、乙兩種手機各多少部?

(2)通過市場調研,該商場決定在原計劃的基礎上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的2倍,而且用于購進這兩種手機的總資金不超過16萬元,該商場怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ACB=∠ADB90°,M、N 分別是 ABCD 的中點.

1)求證:MNCD;

2)若 AB50,CD48,求 MN 的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某農場要建一個飼養(yǎng)場(矩形ABCD)兩面靠現(xiàn)有墻(AD位置的墻最大可用長度為27米,AB位置的墻最大可用長度為15米),另兩邊用木欄圍成,中間也用木欄隔開,分成兩個場地及一處通道,并在如圖所示的三處各留1米寬的門(不用木欄).建成后木欄總長45米.設飼養(yǎng)場(矩形ABCD)的一邊AB長為x米.


1)飼養(yǎng)場另一邊BC=____米(用含x的代數(shù)式表示).
2)若飼養(yǎng)場的面積為180平方米,求x的值.

查看答案和解析>>

同步練習冊答案