【題目】如圖,一次函數(shù)y=kx+b(k<0)與反比例函數(shù)的圖象相交于A(yíng)、B兩點(diǎn),一次函數(shù)的圖象與y軸相交于點(diǎn)C,已知點(diǎn)A(4,1)
(1)求反比例函數(shù)的解析式;
(2)連接OB(O是坐標(biāo)原點(diǎn)),若△BOC的面積為3,求該一次函數(shù)的解析式.
【答案】(1);(2).
【解析】
(1)由點(diǎn)A的坐標(biāo)結(jié)合反比例函數(shù)系數(shù)k的幾何意義,即可求出m的值;
(2)設(shè)點(diǎn)B的坐標(biāo)為(n,),將一次函數(shù)解析式代入反比例函數(shù)解析式中,利用根與系數(shù)的關(guān)系可找出n、k的關(guān)系,由三角形的面積公式可表示出來(lái)b、n的關(guān)系,再由點(diǎn)A在一次函數(shù)圖象上,可找出k、b的關(guān)系,聯(lián)立3個(gè)等式為方程組,解方程組即可得出結(jié)論.
(1)∵點(diǎn)A(4,1)在反比例函數(shù)的圖象上,
∴m=4×1=4,
∴反比例函數(shù)的解析式為.
(2)∵點(diǎn)B在反比例函數(shù)的圖象上,
∴設(shè)點(diǎn)B的坐標(biāo)為(n,).
將y=kx+b代入中,得:kx+b=,
整理得:,∴4n=,即nk=﹣1①.
令y=kx+b中x=0,則y=b,
即點(diǎn)C的坐標(biāo)為(0,b),
∴S△BOC=bn=3,∴bn=6②.
∵點(diǎn)A(4,1)在一次函數(shù)y=kx+b的圖象上,
∴1=4k+b③.
聯(lián)立①②③成方程組,即,解得:,
∴該一次函數(shù)的解析式為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ACB=∠ADB=90°,M、N 分別是 AB、CD 的中點(diǎn).
(1)求證:MN⊥CD;
(2)若 AB=50,CD=48,求 MN 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)要建一個(gè)飼養(yǎng)場(chǎng)(矩形ABCD)兩面靠現(xiàn)有墻(AD位置的墻最大可用長(zhǎng)度為27米,AB位置的墻最大可用長(zhǎng)度為15米),另兩邊用木欄圍成,中間也用木欄隔開(kāi),分成兩個(gè)場(chǎng)地及一處通道,并在如圖所示的三處各留1米寬的門(mén)(不用木欄).建成后木欄總長(zhǎng)45米.設(shè)飼養(yǎng)場(chǎng)(矩形ABCD)的一邊AB長(zhǎng)為x米.
(1)飼養(yǎng)場(chǎng)另一邊BC=____米(用含x的代數(shù)式表示).
(2)若飼養(yǎng)場(chǎng)的面積為180平方米,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】課間,小剛拿著老師的等腰直角三角板玩,一不小心掉到垂直地面的兩個(gè)木塊之間,如圖所示:
(1)求證:△ADC≌△CEB;
(2)若測(cè)得AD=15cm,BE=10cm,求兩個(gè)木塊之間的距離DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點(diǎn)P在以D(4,4)為圓心,1為半徑的圓上運(yùn)動(dòng),且始終滿(mǎn)足∠BPC=90°,則a的最大值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線(xiàn)l與拋物線(xiàn)相交于A(yíng)(1,),B(4,0)兩點(diǎn).
(1)求出拋物線(xiàn)的解析式;
(2)在坐標(biāo)軸上是否存在點(diǎn)D,使得△ABD是以線(xiàn)段AB為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由;
(3)點(diǎn)P是線(xiàn)段AB上一動(dòng)點(diǎn),(點(diǎn)P不與點(diǎn)A、B重合),過(guò)點(diǎn)P作PM∥OA,交第一象限內(nèi)的拋物線(xiàn)于點(diǎn)M,過(guò)點(diǎn)M作MC⊥x軸于點(diǎn)C,交AB于點(diǎn)N,若△BCN、△PMN的面積S△BCN、S△PMN滿(mǎn)足S△BCN=2S△PMN,求出的值,并求出此時(shí)點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)某學(xué)習(xí)小組在探究三角形全等時(shí),發(fā)現(xiàn)了下面這種典型的基本圖形.如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線(xiàn)L經(jīng)過(guò)點(diǎn)A,BD⊥直線(xiàn)L,CE⊥直線(xiàn)L,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)組員小劉想,如果三個(gè)角不是直角,那結(jié)論是否會(huì)成立呢?如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線(xiàn)L上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵(lì)他們運(yùn)用這個(gè)知識(shí)來(lái)解決問(wèn)題:如圖③,過(guò)△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,AH是BC邊上的高,延長(zhǎng)HA交EG于點(diǎn)I,求證:I是EG的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC 中,∠A=90°,現(xiàn)要在 AC 邊上確定一點(diǎn) D,使點(diǎn) D到 BA、BC 的距離相等.
(1)請(qǐng)你按照要求,在圖上確定出點(diǎn) D 的位置(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡);
(2)若 BC=10,AB=8,則 AC= ,AD= (直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一個(gè)等腰直角三角形按圖示方式依次翻折,若DE=a,則下列說(shuō)法正確的有(____)
①DC′平分∠BDE;②BC長(zhǎng)為;③△是等腰三角形;④△CED的周長(zhǎng)等于BC的長(zhǎng).
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com