【題目】如圖,四邊形ABCD為矩形,△ACE為AC為底的等腰直角三角形,連接BE交AD、AC分別于F. N,CM平分∠ACB交BN于M,下列結(jié)論:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正確的結(jié)論有( )
A. 1個(gè)B. 2個(gè)
C. 3個(gè)D. 4個(gè)
【答案】B
【解析】
連接DE,由∠ABC=∠AEC=∠ADC=90°,根據(jù)圓周角定理的推論得到點(diǎn)A、B、C、D、E都在以AC為直徑的圓上,再利用矩形的性質(zhì)可得AE=ME,即①正確;再根據(jù)圓周角定理得到∠AEB=∠ACB,∠DAC=∠CED,∠EAD=∠ECD,易證△AEF≌△CED,即可得到AB=AF,即②正確;由②得到∠ABF=∠AFB=45°,求出∠EMC=∠MCB+45°,
而∠ECM=∠NCM+45°,即③正確;根據(jù)等腰三角形性質(zhì)求出∠EAM=∠AME,推出∠EAM=45°+∠MAN,∠AME=45°+∠BAM,即可判斷(4).
連接DE.
∵四邊形ABCD為矩形,△ACE為AC為底的等腰直角三角形,
∴∠ABC=∠AEC=∠ADC=90°,AB=CD,AD=BC,
∴點(diǎn)A. B. C. D. E都在以AC為直徑的圓上,
∵AB=CD,
∴弧AB=弧CD,
∴∠AEB=∠CED,
∴∠BED=∠BEC+∠CED=∠BEC+∠AEB=90°,
∴BE⊥ED,故(1)正確;
∵點(diǎn)A. B. C. D. E都在以AC為直徑的圓上,
∴∠AEF=∠CED,∠EAF=∠ECD,
又∵△ACE為等腰直角三角形,
∴AE=CE,
在△AEF和CED中,
,
∴△AEF≌△CED,
∴AF=CD,
而CD=AB,
∴AB=AF,即(2)正確;
∴∠ABF=∠AFB=45°,
∴∠EMC=∠MCB+45°,
而∠ECM=∠NCM+45°,
∵CM平分∠ACB交BN于M,
∴∠EMC=∠ECM,
∴EC=EM,
∴EM=EA,即(3)正確;
∵AB=AF,∠BAD=90°,EM=EA,
∴∠ABF=∠CBF=45°,∠EAM=∠AME,
∵△AEC是等腰直角三角形,
∴∠EAC=45°,
∴∠EAM=45°+∠MAN,∠AME=∠ABM+∠BAM=45°+∠BAM,
∴∠BAM=∠NAM,∴(4)正確;
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著阿里巴巴、淘寶網(wǎng)、京東、小米等互聯(lián)網(wǎng)巨頭的崛起,催生了快遞行業(yè)的高速發(fā)展.據(jù)調(diào)查,杭州市某家小型快遞公司,今年一月份與三月份完成投遞的快遞總件數(shù)分別為10萬件和12.1萬件.現(xiàn)假定該公司每月投遞的快遞總件數(shù)的增長率相同.
(1)求該快遞公司投遞快遞總件數(shù)的月平均增長率;
(2)如果平均每人每月最多可投遞快遞0.6萬件,那么該公司現(xiàn)有的21名快遞投遞業(yè)務(wù)員能否完成今年4月份的快遞投遞任務(wù)?如果不能,請(qǐng)問至少需要增加幾名業(yè)務(wù)員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由幾個(gè)相同的邊長為1的小立方塊搭成的幾何體的俯視圖如下圖,格中的數(shù)字表示該位置的小立方塊的個(gè)數(shù).
(1)請(qǐng)?jiān)谙旅娣礁窦堉蟹謩e畫出這個(gè)向何體的主視圖和左視圖.
(2)根據(jù)三視圖;這個(gè)組合幾何體的表面積為 _________ 個(gè)平方單位.(包括底面積)
(3)若上述小立方塊搭成的幾何體的俯視圖不變,各位置的小立方塊個(gè)數(shù)可以改變(總數(shù)目不變),則搭成這樣的組合幾何體中的表面積最大是為 _________ 個(gè)平方單位.(包括底面積)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的三邊為邊在BC同側(cè)分別作等邊三角形,即△ABD,△BCE,△ACF.
(1)四邊形ADEF為__________四邊形;
(2)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF為矩形;
(3)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF為菱形;
(4)當(dāng)△ABC滿足條件____________時(shí),四邊形ADEF不存在.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F是對(duì)角線BD上的兩點(diǎn),如果添加一個(gè)條件使△ABE≌△CDF,則添加的條件不能是( )
A. AE=CFB. BE=FDC. BF=DED. ∠1=∠2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識(shí),求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)為常數(shù),且).
(1)若在其圖像的每個(gè)分支上,隨的增大而增大,求的取值范圍.
(2)若其圖象與一次函數(shù)y=x+1圖象的一個(gè)交點(diǎn)的縱坐標(biāo)是3,求m的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=x﹣2與反比例函數(shù)y=的圖象交于A、B兩點(diǎn).
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)觀察圖象,直接寫出一次函數(shù)值小于反比例函數(shù)值的x的取值范圍;
(3)坐標(biāo)原點(diǎn)為O,求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)七年級(jí)開展演講比賽,學(xué)校決定購買一些筆記本和鋼筆作為獎(jiǎng)品.現(xiàn)了解情況如下:甲、乙兩家商店出售兩種同樣品牌的筆記本和鋼筆.筆記本定價(jià)為每本20元,鋼筆每支定價(jià)5元,經(jīng)洽談后,甲店每買一本筆記本贈(zèng)一支鋼筆;乙店全部按定價(jià)的9折優(yōu)惠.七年級(jí)需筆記本20本,鋼筆若干支(不小于20支).問:
(1)如果購買鋼筆(不小于20)支,則在甲店購買需付款 ______ 元,在乙店購買需付款 _______________ 元.(用x的代數(shù)式表示)
(2)當(dāng)購買鋼筆多少支時(shí),在兩店購買付款一樣?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com