【題目】如圖,以△ABC的三邊為邊在BC同側分別作等邊三角形,即△ABD,△BCE,△ACF.
(1)四邊形ADEF為__________四邊形;
(2)當△ABC滿足條件____________時,四邊形ADEF為矩形;
(3)當△ABC滿足條件____________時,四邊形ADEF為菱形;
(4)當△ABC滿足條件____________時,四邊形ADEF不存在.
【答案】(1)平行;(2)∠BAC=150°;(3)AB=AC且∠BAC≠60°;(4)∠BAC=60°.
【解析】
(1)可先證明△ABC≌△DBE,可得DE=AC,又有AC=AF,可得DE=AF,同理可得AD=EF,根據兩組對邊分別相等的四邊形是平行四邊形,可證四邊形ADEF是平行四邊形;
(2)如四邊形ADEF是矩形,則∠DAF=90°,又有∠BAD=∠FAC=60°,可得∠BAC=150°,故∠BAC=150°時,四邊形ADEF是矩形;
(3)利用菱形的性質與判定得出即可;
(4)根據∠BAC=60°時,∠DAF=180°,此時D、A、F三點在同一條直線上,以A,D,E,F為頂點的四邊形就不存在.
(1)證明:∵△ABD,△BCE都是等邊三角形,
∴∠DBE=∠ABC=60°-∠ABE,AB=BD,BC=BE.
在△ABC和△DBE中
,
∴△ABC≌△DBE(SAS).
∴DE=AC.
又∵AC=AF,
∴DE=AF.
同理可得EF=AD.
∴四邊形ADEF是平行四邊形.
(2)∵四邊形ADEF是平行四邊形,
∴當∠DAF=90°時,四邊形ADEF是矩形,
∴∠FAD=90°.
∴∠BAC=360°-∠DAF-∠DAB-∠FAC=360°-90°-60°-60°=150°.
則當∠BAC=150°時,四邊形ADEF是矩形;
故答案為:∠BAC=150°;
(3)當AB=AC且∠BAC≠60°時,四邊形ADEF是菱形,
理由是:由(1)知:AD=AB=EF,AC=DE=AF,
∵AC=AB,
∴AD=AF,
∵四邊形ADEF是平行四邊形,AD=AF,
∴平行四邊形ADEF是菱形.
故答案為:AB=AC且∠BAC≠60°(或AB=AC≠BC);
(4)當∠BAC=60°時,∠DAF=180°,
此時D、A、F三點在同一條直線上,以A,D,E,F為頂點的四邊形就不存在;
故答案為:∠BAC=60°.
科目:初中數學 來源: 題型:
【題目】在△ABC中,∠ABC<20°,三邊長分別為a,b,c,將△ABC沿直線BA翻折,得到△ABC1;然后將△ABC1沿直線BC1翻折,得到△A1BC1;再將△A1BC1沿直線A1B翻折,得到△A1BC2;…,若翻折4次后,得到圖形A2BCAC1A1C2的周長為a+c+5b,則翻折11次后,所得圖形的周長為_____________.(結果用含有a,b,c的式子表示)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AB=10,BC=8,P、Q分別是AB、BC邊上的點,且AP=BQ=a (其中0<a<8).
(1)若PQ⊥BC,求a的值;
(2)若PQ=BQ,把線段CQ繞著點Q旋轉180°,試判別點C的對應點C’是否落在線段QB上?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點O為Rt△ABC斜邊AB上一點,以OA為半徑的⊙O與BC相切于點D,與AC相交于點E,與AB相交于點F,連接AD.
(1)求證:AD平分∠BAC;
(2)若點E為弧AD的中點,探究線段BD,CD之間的數量關系,并證明你的結論;
(3)若點E為弧AD的中點,CD=,求弧DF與線段BD,BF所圍成的陰影部分的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某水果批發(fā)商欲將A市的一批水果運往B市銷售,有火車和汽車兩種運輸工具,運輸過程中的損耗均為160元/時。有關數據如下:
運輸工具 | 平均速度(千米/時) | 運費(元/千米) | 裝卸費(元) |
火車 | 100 | 18 | 1800 |
汽車 | 80 | 22 | 1000 |
(1)如果汽車的總支出費用比火車費用多960元,求出A市與B市之間的路程是多少千米?請列方程解答。
(2)如果A市與C市之間的距離為300千米,要想將這批水果運往C市銷售。選擇哪種運輸工具比較合算呢?請通過計算說明你的理由。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(探索新知)
如圖1,點C在線段AB上,圖中共有3條線段:AB、AC和BC,若其中有一條線段的長度是另一條線段長度的兩倍,則稱點C是線段AB的“二倍點”.
(1)一條線段的中點 這條線段的“二倍點”;(填“是”或“不是”)
(深入研究)
如圖2,若線段AB=20cm,點M從點B的位置開始,以每秒2cm的速度向點A運動,當點M到達點A時停止運動,運動的時間為t秒.
(2)問t為何值時,點M是線段AB的“二倍點”;
(3)同時點N從點A的位置開始,以每秒1cm的速度向點B運動,并與點M同時停止.請直接寫出點M是線段AN的“二倍點”時t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,△ACE為AC為底的等腰直角三角形,連接BE交AD、AC分別于F. N,CM平分∠ACB交BN于M,下列結論:(1)BE⊥ED;(2)AB=AF;(3)EM=EA;(4)AM平分∠BAC,其中正確的結論有( )
A. 1個B. 2個
C. 3個D. 4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在邊長為2的正方形ABCD中,點P是邊AD上的動點(點P不與點A、點D重合),點Q是邊CD上一點,聯結PB、PQ,且∠PBC=∠BPQ.
(1)當QD=QC時,求∠ABP的正切值;
(2)設AP=x,CQ=y,求y關于x的函數解析式;
(3)聯結BQ,在△PBQ中是否存在度數不變的角?若存在,指出這個角,并求出它的度數;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】定義:有三個角相等的四邊形叫做三等角四邊形.
(1)在三等角四邊形中,,則的取值范圍為________.
(2)如圖①,折疊平行四邊形,使得頂點、分別落在邊、上的點、處,折痕為、.求證:四邊形為三等角四邊形;
(3)如圖②,三等角四邊形中,,若,,,則 的長度為多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com