【題目】如圖,在直角坐標(biāo)系中,正方形OABC的頂點O與原點重合,頂點A。C分別在x軸、y軸上,反比例函數(shù)的圖象與正方形的兩邊AB、BC分別交于點M、N,ND⊥x軸,垂足為D,連接OM、ON、MN。
下列結(jié)論:
①△OCN≌△OAM;
②ON=MN;
③四邊形DAMN與△MON面積相等;
④若∠MON=450,MN=2,則點C的坐標(biāo)為。
其中正確的個數(shù)是【 】
A.1 B.2 C.3 D.4
【答案】C。
【解析】設(shè)正方形OABC的邊長為a,
則A(a,0),B(a,a),C(0,a),M(a,),N(,a)。
∵CN=AM= ,OC=OA= a,∠OCN=∠OAM=900,
∴△OCN≌△OAM(SAS)。結(jié)論①正確。
根據(jù)勾股定理,,,
∴ON和MN不一定相等。結(jié)論②錯誤。
∵,
∴。結(jié)論③正確。
如圖,過點O作OH⊥MN于點H,則
∵△OCN≌△OAM ,∴ON=OM,∠CON=∠AOM。
∵∠MON=450,MN=2,
∴NH=HM=1,∠CON=∠NOH=∠HOM=∠AOM=22.50。
∴△OCN≌△OHN(ASA)。∴CN=HN=1。
∴。
由得,。
解得:(舍去負值)。
∴點C的坐標(biāo)為。結(jié)論④正確。
∴結(jié)論正確的為①③④3個。故選C。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=45°,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,且EH=EB.下列四個結(jié)論:①∠ABC=45°;②AH=BC;③BE+CH=AE;④△AEC是等腰直角三角形.你認為正確的序號是( )
A. ①②③ B. ①③④ C. ②③④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15,寬為10,高為20,點B離點C的距離為5,一只螞蟻如果要沿著長方體的表面從點A爬到點B,需要爬行的最短距離是__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形中,過作一直線與相交于點,過作垂直于點,過作垂直于點,在上截取,再過作垂直交于.若.則與四邊形的面積之和為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形為矩形,四邊形為菱形.
求證:;
試探究:當(dāng)矩形邊長滿足什么關(guān)系時,菱形為正方形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在中,,分別是,的中點,是對角線,交延長線于.若四邊形是菱形,則四邊形是( )
A. 平行四邊形 B. 矩形
C. 菱形 D. 正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的頂點A(1,1),B(3,1),直線y=2x+b交邊AB于點E,交邊CD于點F,則直線y=2x+b 在y 軸上的截距b的變化范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)平面內(nèi),二次函數(shù)圖象的頂點為A(1,﹣4),且過點B(3,0).
(1)求該二次函數(shù)的解析式;
(2)將該二次函數(shù)圖象向右平移幾個單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點?并直接寫出平移后所得圖象與x軸的另一個交點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)y= (m為常數(shù),且m≠5).
(1)若在其圖象的每個分支上,y隨x的增大而增大,求m的取值范圍;
(2)若其圖象與一次函數(shù)y=-x+1的圖象的一個交點的縱坐標(biāo)是3,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com