【題目】如圖,在平面直角坐標(biāo)系xOy中,Rt△OCD的一邊OC在x軸上,∠OCD=90°,點D在第一象限,OC=6,DC=4,反比例函數(shù)的圖象經(jīng)過OD的中點A.
(1)求該反比例函數(shù)的解析式;
(2)若該反比例函數(shù)的圖象與Rt△OCD的另一邊DC交于點B,求過A、B兩點的直線的解析式.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是的直徑,PA與⊙O 相切于點A,點C在⊙O 上,且PC=PA,
(1)求證PC是⊙O的切線;
(2)過點C作CD⊥AB于點E,交⊙O于點D,若CD=PA=2,
①求圖中陰影部分面積;
②連接AC,若△PAC的內(nèi)切圓圓心為I,則線段IE的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,正方形的中心在原點O,且正方形的一組對邊與x軸平行,點P(3a,a)是反比例函數(shù)(k>0)的圖象上與正方形的一個交點.若圖中陰影部分的面積等于9,則這個反比例函數(shù)的解析式為 ▲ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了了解學(xué)生最喜歡的一種球類運動,以便合理安排活動場地,在全校至少喜歡一種球類(乒乓球、羽毛球、排球、籃球、足球)運動的1800名學(xué)生中,隨機抽取了若干名學(xué)生進行調(diào)查(每人只能在這五種球類運動中選擇一種),調(diào)查結(jié)果統(tǒng)計如下:
球類名稱 | 乒乓球 | 羽毛球 | 排球 | 籃球 | 足球 |
人數(shù) | 42 | a | b | 33 | 21 |
解答下列問題:
(1)這次抽樣調(diào)查的總?cè)藬?shù)是 ,統(tǒng)計表中a的值為 .
(2)求扇形統(tǒng)計圖中排球一項的扇形圓心角度數(shù).
(3)試估計全校1800名學(xué)生中最喜歡乒乓球運動的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為2,點A的坐標(biāo)為(2,2),直線AB為⊙O的切線,B為切點.則B點的坐標(biāo)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:
我們知道,四邊形的一條對角線把這個四邊形分成了兩個三角形,如果這兩個三角形相似(不全等),我們就把這條對角線叫做這個四邊形的“相似對角線”.
理解:
(1)如圖1,已知Rt△ABC在正方形網(wǎng)格中,請你只用無刻度的直尺在網(wǎng)格中找到一點D,使四邊形ABCD是以AC為“相似對角線”的四邊形(保留畫圖痕跡,找出3個即可);
(2)如圖2,在四邊形ABCD中,∠ABC=80°,∠ADC=140°,對角線BD平分∠ABC.
求證:BD是四邊形ABCD的“相似對角線”;
(3)如圖3,已知FH是四邊形EFCH的“相似對角線”,∠EFH=∠HFG=30°,連接EG,若△EFG的面積為2,求FH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調(diào)查了多少名購買者?
(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應(yīng)的圓心角為 度.
(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)與一次函數(shù)交于第二、四象限的,兩點,過點作軸于點,,,點的坐標(biāo)為.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)請根據(jù)圖象直接寫出的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+2經(jīng)過A(﹣1,0),B(2,0),C三點.直線y=mx+交拋物線于A,Q兩點,點P是拋物線上直線AQ上方的一個動點,作PF⊥x軸,垂足為F,交AQ于點N.
(1)求拋物線的解析式;
(2)如圖①,當(dāng)點P運動到什么位置時,線段PN=2NF,求出此時點P的坐標(biāo);
(3)如圖②,線段AC的垂直平分線交x軸于點E,垂足為D,點M為拋物線的頂點,在直線DE上是否存在一點G,使△CMG的周長最?若存在,請求出點G的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com