【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)與一次函數(shù)交于第二、四象限的兩點(diǎn),過點(diǎn)軸于點(diǎn),,點(diǎn)的坐標(biāo)為

(1)求反比例函數(shù)和一次函數(shù)的解析式;

(2)請根據(jù)圖象直接寫出的自變量的取值范圍.

【答案】(1) 反比例函數(shù)的解析式為y=﹣,一次函數(shù)的解析式為y=﹣x+2.(2x20x≤6

【解析】

1)根據(jù)SAOD=3可得AD=2,根據(jù)反比例函數(shù)的特點(diǎn)k=xy為定值,列出方程,求出k的值,便可求出反比例函數(shù)的解析式;根據(jù)k的值求出B點(diǎn)的坐標(biāo),用待定系數(shù)法便可求出一次函數(shù)的解析式.

2)根據(jù)函數(shù)圖象可直接解答.

1)∵ADy軸于點(diǎn)DOD3,

,

AD2.即A(﹣23),

A點(diǎn)坐標(biāo)代入yk≠0),得k=﹣2×3=﹣6

反比例函數(shù)的解析式為y=﹣

B點(diǎn)坐標(biāo)代入y=﹣中,得﹣1=﹣,解得n6.即B6,﹣1),

A、B兩點(diǎn)坐標(biāo)代入yax+b,得,解得

所以一次函數(shù)的解析式為y=﹣x+2

2ax+b的自變量x的取值范圍是x20x≤6

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線軸相交于兩點(diǎn),與軸相交于點(diǎn),且點(diǎn)與點(diǎn)的坐標(biāo)分別為,,點(diǎn)是拋物線的頂點(diǎn).

1)求二次函數(shù)的關(guān)系式.

2)點(diǎn)為線段上一個(gè)動(dòng)點(diǎn),過點(diǎn)軸于點(diǎn).若的面積為

①求的函數(shù)關(guān)系式,寫出自變量的取值范圍.

②當(dāng)取得最值時(shí),求點(diǎn)的坐標(biāo).

3)在上是否存在點(diǎn),使為直角三角形?如果存在,請直接寫出點(diǎn)的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦園博會(huì)知識(shí)競賽,打算購買A、B兩種獎(jiǎng)品.如果購買A獎(jiǎng)品10件、B獎(jiǎng)品5件,共需120元;如果購買A獎(jiǎng)品5件、B獎(jiǎng)品10件,共需90元.

1A,B兩種獎(jiǎng)品每件各多少元?

2)若購買A、B獎(jiǎng)品共100件,總費(fèi)用不超過600元,則A獎(jiǎng)品最多購買多少件?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線經(jīng)過B3,0),C0-3)兩點(diǎn),點(diǎn)D為頂點(diǎn).

1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

2)點(diǎn)E在拋物線的對稱軸上,FBD上,求BE+EF的最小值;

3)點(diǎn)P是拋物線第四象限的點(diǎn)(不與BC重合),連接PB,以PB為邊作正方形BPMN,當(dāng)點(diǎn)MN恰好落在對稱軸上時(shí),求出對應(yīng)的P點(diǎn)的坐標(biāo)(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司開發(fā)處一款新的節(jié)能產(chǎn)品,該產(chǎn)品的成本價(jià)為6/件,該產(chǎn)品在正式投放市場前通過代銷點(diǎn)進(jìn)行了為期一個(gè)月(30)的試銷售,售價(jià)為10/件,工作人員對銷售情況進(jìn)行了跟蹤記錄,并將記錄情況繪制成圖象,圖中的折線ABC表示日銷售量y()與銷售時(shí)間x()之間的函數(shù)關(guān)系.

(1)yx之間的函數(shù)表達(dá)式,并寫出x的取值范圍;

(2)若該節(jié)能產(chǎn)品的日銷售利潤為W(),求Wx之間的函數(shù)表達(dá)式,并求出日銷售利潤不超過1040元的天數(shù)共有多少天?

(3)5≤x≤17,直接寫出第幾天的日銷售利潤最大,最大日銷售利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn),,與直線交于點(diǎn),直線軸交于點(diǎn)

(1)求該拋物線的解析式.

(2)點(diǎn)是拋物線上第四象限上的一個(gè)動(dòng)點(diǎn),連接,,當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo).

(3)將拋物線的對稱軸向左平移3個(gè)長度單位得到直線,點(diǎn)是直線上一點(diǎn),連接,若直線上存在使最大的點(diǎn),請直接寫出滿足條件的點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

動(dòng)手操作:如圖1,四邊形是一張矩形紙片,,點(diǎn)分別在邊上,且,連接,將分別沿折疊,點(diǎn)分別落在點(diǎn)處.

探究展示:(1刻苦小組發(fā)現(xiàn):,且,并展示了如下的證明過程.

證明:在矩形中,,

又∵,

,

,

,

(依據(jù)1

(依據(jù)2

反思交流:①上述證明過程中的依據(jù)1”依據(jù)2”分別指什么?

勤奮小組認(rèn)為:還可以通過證明四邊形是平行四邊形獲證,請你根據(jù)勤奮小組的證明思路寫出證明過程.

猜想證明:(2)如圖2,折疊過程中,當(dāng)點(diǎn)在直線的同側(cè)時(shí),延長于點(diǎn),延長于點(diǎn)中,則四邊形是什么特殊四邊形?請說明理由.

聯(lián)想拓廣:(3)如圖3,連接

①當(dāng)時(shí),的長為_____________________

的長有最小值嗎?若有,請你直接寫出的最小值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】深圳某百果園店售賣贛南臍橙,已知每千克臍橙的成本價(jià)為元,在銷售臍橙的這天時(shí)間內(nèi),銷售單價(jià)(元/千克)與時(shí)間第(天)之間的函數(shù)關(guān)系式為,且為整數(shù)),日銷售量(千克)與時(shí)間第(天)之間的函數(shù)關(guān)系式為,且為整數(shù))

1)請你直接寫出日銷售利潤(元)與時(shí)間第(天)之間的函數(shù)關(guān)系式;

2)該店有多少天日銷售利潤不低于元?

3)在實(shí)際銷售中,該店決定每銷售千克臍橙,就捐贈(zèng)元給希望工程,在這天中,每天扣除捐贈(zèng)后的日銷售利潤隨時(shí)間的增大而增大,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,弦于點(diǎn),過點(diǎn)的切線交的延長線于點(diǎn)

1)已知,求的大。ㄓ煤的式子表示);

2)取的中點(diǎn),連接,請補(bǔ)全圖形;若,,求的半徑.

查看答案和解析>>

同步練習(xí)冊答案