【題目】如圖,正方形的邊在正方形的邊上,是的中點,的平分線過點,交于點,連接,,與交于點,對于下面四個結(jié)論:①;②且;③;④,其中正確結(jié)論的序號為__________.
【答案】①②④
【解析】
證明△BCE≌△DCG,即可證得∠BEC=∠DGC,然后根據(jù)三角形的內(nèi)角和定理證得∠EHG=90°,則HG⊥BE,然后證明△BGH≌△EGH,則H是BE的中點,則OH是△BGE的中位線,根據(jù)三角形的中位線定理即可判斷②.根據(jù)△DHN∽△DGC求得兩個三角形的邊長的比,則③④即可判斷.
解:四邊形是正方形,
,,
同理可得,.
在和中,
,
.
,
,
,
.
,故①正確;
在和中,,
,
,
又是的中點,
,
故②正確;
設(shè)和相交于點,
設(shè),則,設(shè)正方形的邊長是,則,,
,
,
,即,即,
解得:,或(舍去),
則;
則,故③錯誤;
,
,
,
,
,故④正確.
故答案為:①②④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點,線段AB的兩個端點A(0,2),B(1,0)分別在y軸和x軸的正半軸上,點C為線段AB的中點,現(xiàn)將線段BA繞點B按順時針方向旋轉(zhuǎn)90°得到線段BD,拋物線y=ax2+bx+c(a≠0)經(jīng)過點D.
(1)如圖1,若該拋物線經(jīng)過原點O,且a=-.
①求點D的坐標(biāo)及該拋物線的解析式;
②連結(jié)CD,問:在拋物線上是否存在點P,使得∠POB與∠BCD互余?若存在,請求出所有滿足條件的點P的坐標(biāo),若不存在,請說明理由;
(2)如圖2,若該拋物線y=ax2+bx+c(a≠0)經(jīng)過點E(1,1),點Q在拋物線上,且滿足∠QOB與∠BCD互余.若符合條件的Q點的個數(shù)是3個,請直接寫出a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1),四邊形ABCD中,AB∥CD,∠ADC=90°,P從A點出發(fā),以每秒1個單位長度的速度,按A→B→C→D的順序在邊上勻速運動,設(shè)P點的運動時間為t秒,△PAD的面積為S,S關(guān)于t的函數(shù)圖象如圖(2)所示,當(dāng)P運動到BC中點時,△PAD的面積為( )
A. 4B. 5C. 6D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(操作思考)畫⊙和⊙的直徑、弦,使,垂足為(如圖1).猜想所畫的圖中有哪些相等的線段、相等的劣?(除外).
(1)猜想:① ;② ;③ .
操作:將圖1中的沿著直徑翻折,因為圓是軸對稱圖形,過圓心的任意一條直線都是它的對稱軸,所以與重合,又因為,所以射線與射線重合(如圖2),于是點與點重合,從而證實猜想.
(知識應(yīng)用)圖3是某品牌的香水瓶,從正面看上去(如圖4),它可以近似看作割去兩個弓形后余下的部分與矩形組合而成的圖形(點在上),其中.
(2)已知⊙的半徑為,,,,求香水瓶的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形的邊長為1,點是邊上的一個動點(與,不重合),以為頂點在所在直線的上方作
(1)當(dāng)經(jīng)過點時,
①請直接填空:________(可能,不可能)過點:(圖1僅供分析)
②如圖2,在上截取,過點作垂直于直線,垂足為點,作于,求證:四邊形為正方形;
③如圖2,將②中的已知與結(jié)論互換,即在上取點(點在正方形外部),過點作垂直于直線,垂足為點,作于,若四邊形為正方形,那么與是否相等?請說明理由;
(2)當(dāng)點在射線上且不過點時,設(shè)交邊于,且.在上存在點,過點作垂直于直線,垂足為點,使得,連接,則當(dāng)為何值時,四邊形的面積最大?最大面積為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為滿足市場需求,某超市在“中秋”節(jié)前購進(jìn)一種品牌月餅,每盒進(jìn)價40元,超市規(guī)定每盒售價不得低于40元,根據(jù)以往銷售經(jīng)驗,當(dāng)售價定為每盒45元時,預(yù)計每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求每天的銷售量(盒)與售價(元)之間的函數(shù)關(guān)系式;
(2)如果要保證超市每天的利潤為7980元,又要盡量減少庫存,超市每天應(yīng)該銷售多少盒月餅?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個二次函數(shù)滿足以下條件:
①函數(shù)圖象與x軸的交點坐標(biāo)分別為A(1,0),B(x2,y2)(點B在點A的右側(cè));
②對稱軸是x=3;
③該函數(shù)有最小值是﹣2.
(1)請根據(jù)以上信息求出二次函數(shù)表達(dá)式;
(2)將該函數(shù)圖象x>x2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A.“打開電視機(jī),正在播NBA籃球賽”是必然事件
B.“擲一枚硬幣正面朝上的概率是”表示每擲硬幣2次就必有1次反面朝上
C.一組數(shù)據(jù)2,3,4,5,5,6的眾數(shù)和中位數(shù)都是5
D.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com