【題目】正方形的邊長為1,點邊上的一個動點(與,不重合),以為頂點在所在直線的上方作

1)當經(jīng)過點時,

①請直接填空:________(可能,不可能)過點:(圖1僅供分析)

②如圖2,在上截取,過點作垂直于直線,垂足為點,作,求證:四邊形為正方形;

③如圖2,將②中的已知與結論互換,即在上取點點在正方形外部),過點作垂直于直線,垂足為點,作,若四邊形為正方形,那么是否相等?請說明理由;

2)當點在射線上且不過點時,設交邊,且.在上存在點,過點作垂直于直線,垂足為點,使得,連接,則當為何值時,四邊形的面積最大?最大面積為多少?

【答案】1)①不可能  ②詳見解析處 ③結論:OAOE,理由:詳見解析處 2)當BO時,四邊形PKBG的面積最大,最大值

【解析】

1)①若ON過點D,則在△OAD中不能滿足勾股定理,據(jù)此可知ON不可能過點D;

②由條件可判斷出四邊形EFCH為矩形,再證明△OFE≌△ABO,可得結論;

③結論:OAOE,如圖2-1中,連接EC,在BA上取一點Q,使得BQBO,連接OQ,證明△AQO≌△OCE即可.

2)根據(jù)條件可證明△PKO∽△OBG,利用相似三角形的性質可得OP1,可得△POG面積為定值及△PKO和△OBG的關系,只要△OGB的面積有最大值時,四邊形PKBG的面積也最大,設OBaBGb,由勾股定理可用b表示出a,則可用a表示出△OBG的面積,利用二次函數(shù)的性質即可求得其最大值,繼而可求得四邊形PKBG的面積最大值.

解:(1)①若ON過點D,則OAAB,ODCD,

OA2AD2,OD2AD2,

OA2 OD22AD2AD2,

∴∠AOD90°,這與∠MON90°矛盾,

ON不可能過點D

故答案為:不可能;

②如圖2中,

EHCD,EFBC

∴∠EHC=∠EFC90°且∠HCF90°,

∴四邊形EFCH為矩形,

∵∠MON90°,

∴∠EOF90°-∠AOB

在正方形ABCD中,

BAO90°-∠AOB

∴∠EOF=∠BAO,

在△OFE和△ABO中, ,

∴△OFE≌△ABOAAS

EFOBOFAB,

又∵OFCFOCABBCBOOCEFOC,

CFEF

∴四邊形EFCH為正方形;

③結論:OAOE

理由:如圖2-1所示,連接EC,在BA上取一點Q,使得BQBO,連接OQ

ABBC,BQBO,

AQOC

∵∠QAO=∠EOC,∠AQO=∠ECO135°,

∴△AQO=△OCEASA

OAEO

2

∵∠POK=∠OGB,∠PKO=∠OBG,

∴△PKO∽△OBG,

SPKOSOBG

,

OP1,

SPOG·OG·OP=/span>×1×21,

OBa,BGb,則a2b2OG24,

b,

SOBGaba

∴當a22時,SOBG有最大值1,此時SPKOSOBG,

∴四邊形PKBG的最大面積為1+1+

∴當BO時,四邊形PKBG的面積最大,最大值

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,某社會實踐活動小組實地測量兩岸互相平行的一段河的寬度在河的南岸邊點A,測得河的北岸邊點B在其北偏東45°方向,然后向西走60 m到達點C,測得點B在點C的北偏東60°方向,如圖②.

(1)求∠CBA的度數(shù);

(2)求出這段河的寬(結果精確到1 m,參考數(shù)據(jù):≈1.41,≈1.73).

       

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線的頂點,且經(jīng)過點,與軸分別交于兩點.

1)求直線和該拋物線的解析式;

2)如圖1,點是拋物線上的一個動點,且在直線的上方,過點軸的平行線與直線交于點,求的最大值;

3)如圖2,軸交軸于點,點是拋物線上之間的一個動點,直線、分別交于、,當點運動時,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果一個正整數(shù)能寫成的形式(其中a,b均為自然數(shù)),則稱之為婆羅摩笈多數(shù),比如731均是婆羅摩笈多數(shù),因為7223×12,31223×32

1)請證明:28217都是婆羅摩笈多數(shù)。

2)請證明:任何兩個婆羅摩笈多數(shù)的乘積依舊是婆羅摩笈多數(shù)。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知xOy=90°,線段AB=10,若點AOy上滑動,B隨著線段AB在射線Ox上滑動(A,BO不重合),RtAOB的內(nèi)切圓K分別與OA,OB,AB切于點E,F(xiàn),P.

(1)在上述變化過程中,RtAOB的周長,K的半徑AOB外接圓半徑,這幾個量中不會發(fā)生變化的是什么?并簡要說明理由.

(2)AE=4K的半徑r.

(3)RtAOB的面積為S,AEx,試求Sx之間的函數(shù)關系,并求出S最大時直角邊OA的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A1,A2,A3,…,An是x軸上的點,且OA1=A1A2=A2A3=A3A4=…=An-1An=1,分別過點A1,A2,A3,…,An作x軸的垂線交二次函數(shù)y=x2(x>0)的圖象于點P1,P2,P3,…,Pn.若記△OA1P1的面積為S1,過點P1作P1B1⊥A2P2于點B1,記△P1B1P2的面積為S2,過點P2作P2B2⊥A3P3于點B2,記△P2B2P3的面積為S3……依次進行下去,最后記△Pn-1Bn-1Pn(n>1)的面積為Sn,則Sn=(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在ABC中,ABAC,過AB上一點DDEACBC于點E,以E為頂點,ED為一邊,作∠DEFA,另一邊EFAC于點F

1)求證:四邊形ADEF為平行四邊形;

2)當DAB中點時,四邊形ADEF的形狀為 (直接寫出結論);

3)延長圖1中的DE到點G,使EGDE,連接AEAG,FG,得到圖2.若ADAG,判斷四邊形AEGF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市居民夏季(5月—10月)階梯電價價目如右表.李叔叔家8月份用電500度,他家這個月要電費___元.張阿姨家8月份繳納電費2494元,她家這個月用電___度.(不計公共分攤部分).

階梯

電量(度)

電價/度

第一檔

0260部分

059

第二檔

261600部分

064

第三檔

601度以上部分

089

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖所示,在△ABO中,∠AOB=90°,AO=6cmBO=8cm,AB=10cm.且兩直角邊落在平面直角坐標系的坐標軸上.

1)如果點PA點開始向O1cm/s的速度移動,點Q從點O開始向B2cm/s的速度移動.P,Q分別從A,O同時出發(fā),那么幾秒后,△POQ為等腰三角形?

2)若M,N分別從A,O出發(fā)在三角形的邊上運動,若M點運動的速度是xcm/s,N點運動的速度是ycm/s,當M,N相向運動時,2s后相遇,當MN都沿著邊逆時針運動時9s后相遇.求M、N的速度.

查看答案和解析>>

同步練習冊答案