【題目】如圖,老王開車從A到D,全程共72千米.其中AB段為平地,車速是30千米/小時,BC段為上山路,車速是22.5千米/小時,CD段為下山路,車速是36千米/小時,已知下山路是上山路的2倍.

(1)若AB=6千米,老王開車從A到D共需多少時間?

(2)當BC的長度在一定范圍內變化時,老王開車從A到D所需時間是否會改變?為什么?(給出計算過程)

【答案】(1)2.4小時;(2)從A到D所需時間不變,2.4(小時).

【解析】

(1)根據(jù)AB=6千米,全程共72千米,下山路是上山路的2倍可得出BC=22千米,CD=44千米,進而表示出時間,得出答案即可;

(2)根據(jù)(1)中思路得出設BC=d千米,則CD=2d千米,AB=(72-3d)千米,進而表示出時間求出即可.

(1)若AB=6千米,則BC=22千米,CD=44千米,從A到D所需時間為:

=2.4(小時);

(2)從A到D所需時間不變,(答案正確不回答不扣分)

設BC=d千米,則CD=2d千米,AB=(72﹣3d)千米,

t=

=

=2.4(小時).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】班派出名同學參加數(shù)學競賽,老師以分為基準,把分數(shù)超過分的部分記為正數(shù),不足部分記為負數(shù).評分記錄如下:,,,,,,,,,,

名同學中最高分和最低分各是多少?

超過基準分的和低于基準分的各有多少人?

這十二名同學的平均成績是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在□ABCD中,點EF分別是邊AB,CD的中點,(1)求證:CFB≌△AED

(2)若∠ADB=90°,判斷四邊形BFDE的形狀,并說明理由;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有20筐白菜,以每筐25千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:

(1)20筐白菜中,最重的一筐比最輕的一筐重多少千克?

(2)與標準重量比較,20筐白菜總計超過或不足多少千克?

(3)若白菜每千克售價26元,則出售這20筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求1+2+22+23+…+22016的值,可設S=1+2+22+23+…+22016 , 于是2S=2+22+23+…+22017 , 因此2S﹣S=22017﹣1,所以S=22017﹣1.我們把這種求和方法叫錯位相減法.仿照上述的思路方法,計算出1+5+52+53+…+52016的值為( )
A.52017﹣1
B.52016﹣1
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算題:

(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)

(3)[45-(+)×36]÷5 (4)99×(-36)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:

小明遇到這樣一個問題:如圖1,在△ABC中,DE∥BC分別交ABD,交ACE.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.

小明發(fā)現(xiàn),過點EEF∥DC,交BC延長線于點F,構造△BEF,經過推理和計算能夠使問題得到解決(如圖2).

請回答:BC+DE的值為________

參考小明思考問題的方法,解決問題:

如圖3,已知ABCD和矩形ABEF,ACDF交于點G,AC=BF=DF,求∠AGF的度數(shù)________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(a﹣2b,2﹣4ab)在拋物線y=x2+4x+10上,則點A關于拋物線對稱軸的對稱點坐標為( 。
A.(﹣3,7)
B.(﹣1,7)
C.(﹣4,10)
D.(0,10)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在ABC中,∠BAC=90°,ABC=45°,點D為直線BC上一動點(點D不與點B,C重合).以AD為邊作正方形ADEF,連接CF.

(1)如圖1,當點D在線段BC上時.求證:CF+CD=BC;

(2)如圖2,當點D在線段BC的延長線上時,其他條件不變,請直接寫出CF,BC,CD三條線段之間的關系;

(3)如圖3,當點D在線段BC的反向延長線上時,且點A,F(xiàn)分別在直線BC的兩側,其他條件不變;

①請直接寫出CF,BC,CD三條線段之間的關系;

②若正方形ADEF的邊長為2,對角線AE,DF相交于點O,連接OC.求OC的長度.

查看答案和解析>>

同步練習冊答案