【題目】如圖,在△ABE中,∠A=105°,AE的垂直平分線MN交BE于點C,且AB+BC=BE,則∠B的度數是( )
A. 45° B. 60° C. 50° D. 55°
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,動點D從點A出發(fā)以每秒3個單位的速度運動至點B,過點D作DE⊥AB交射線AC于點E.設點D的運動時間為t秒(t>0).
(1)線段AE的長為 . (用含t的代數式表示)
(2)若△ADE與△ACB的面積比為1:4時,求t的值.
(3)設△ADE與△ACB重疊部分圖形的周長為L,求L與t之間的函數關系式.
(4)當直線DE把△ACB分成的兩部分圖形中有一個是軸對稱圖形時,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A( , )和B(4,m),點P是線段AB上異于A、B的動點,過點P作PC⊥x軸于點D,交拋物線于點C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點,使線段PC的長有最大值?若存在,求出這個最大值;若不存在,請說明理由;
(3)求△PAC為直角三角形時點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下列材料:
關于x的方程:的解是,;即的解是;的解是,;的解是,;
請觀察上述方程與解的特征,比較關于x的方程與它們的關系,猜想它的解是什么?并利用“方程的解”的概念進行驗證.
由上述的觀察、比較、猜想、驗證,可以得出結論:
如果方程的左邊是未知數與其倒數的倍數的和,方程的右邊的形式與左邊完全相同,只是把其中的未知數換成了某個常數,那么這樣的方程可以直接得解,請用這個結論解關于x的方程:.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊三角形ABC中,AD⊥BC于點D,以AD為一邊向右作等邊三角形ADE,DE與AC交于點F.
(1)試判斷DF與EF的數量關系,并給出證明;
(2)若CF的長為2 cm,試求等邊三角形ABC的邊長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(O,1),B(1,2),點P在軸上運動,當點P到A、B兩點的距離之差的絕對值最大時,該點記為點P1,當點P到A、B兩點的距離之和最小時,該點記為點P2,以P1P2為邊長的正方形的面積為
A. 1 B. C. D. 5
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀下面材料: 當前,中國互聯網產業(yè)發(fā)展迅速,互聯網教育市場增長率位居全行業(yè)前列.以下是根據某媒體發(fā)布的2012﹣2015年互聯網教育市場規(guī)模的相關數據,繪制的統計圖表的一部分.
(1)2015年互聯網教育市場規(guī)模約是億元(結果精確到1億元),并補全條形統計圖;
(2)截至2015年底,約有5億網民使用互聯網進行學習,互聯網學習用戶的年齡分布如圖所示,請你補全扇形統計圖 , 并估計7﹣17歲年齡段有億網民通過互聯網進行學習;
(3)根據以上材料,寫出你的思考、感受或建議(一條即可).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點M的坐標為(3,﹣2),線段AB的位置如圖所示,其中點A的坐標為(7,3),點B的坐標為(1,4).
(1)將線段AB平移可以得到線段MN,其中點A的對應點為M(3,﹣2),點B的對應點為N,則點N的坐標為 .
(2)在(1)的條件下,若點C的坐標為(4,0),請在圖中描出點N并順次連接BC,CM,MN,NB,然后求出四邊形BCMN的面積S.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com