【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,動點(diǎn)D從點(diǎn)A出發(fā)以每秒3個單位的速度運(yùn)動至點(diǎn)B,過點(diǎn)D作DE⊥AB交射線AC于點(diǎn)E.設(shè)點(diǎn)D的運(yùn)動時間為t秒(t>0).

(1)線段AE的長為 . (用含t的代數(shù)式表示)
(2)若△ADE與△ACB的面積比為1:4時,求t的值.
(3)設(shè)△ADE與△ACB重疊部分圖形的周長為L,求L與t之間的函數(shù)關(guān)系式.
(4)當(dāng)直線DE把△ACB分成的兩部分圖形中有一個是軸對稱圖形時,直接寫出t的值.

【答案】
(1)5t
(2)

解:方法一:∵ED⊥AB,

∴∠ADE=90°.∵∠ACB=90°,

∴∠ACB=∠ADE.∠A=∠A,

∴△ABC∽△AED,

∵AD=3t,AC=3,BC=4,

∴DE=4t.

,

(舍)

∴t的值為

方法二:∵ED⊥AB,

∴∠ADE=90°.

∵∠ACB=90°,

∴∠ACB=∠ADE.

∵∠A=∠A,

∴△ABC∽△AED,

∵AC=3,AD=3t,

∴2×3t=3,t=


(3)

解:由(2)得:△ABC∽△AED,

∵AD=3t,

∴DE=4t,AE=5t.BD=5﹣3t,

∴當(dāng) 時,L=3t+4t+5t=12t.

∴L=12t.

當(dāng) 時,如圖,

∵∠B=∠B,∠BDF=∠BCA,

∴△ABC∽△FBD,

∵BD=5﹣3t,

∵∠BFD=∠EFC,∠BDF=∠ECF,

∴∠B=∠E,

∵∠FCE=∠BCA

∴△BCA∽△ECF,

∵CE=5t﹣3,


(4)

解:由(1)知,AE=5t,DE=4t,

∴CE=3﹣5t,

當(dāng)DE=CE時,四邊形BCED是軸對稱圖形,

∴4t=3﹣5t,

∴t= ,

當(dāng)DE和BC相交于F,AD=AC時,四邊形ACFE是軸對稱圖形,

∵AD=3t,AC=3,

∴3t=3,

∴t=1.

即:滿足條件的時間t為 或1


【解析】解:(1)在Rt△ABC中,tanA= =
由題意得,AD=3t,
在Rt△ADE中,tanA= = = ,
根據(jù)勾股定理得,AE=5t.
所以答案是5t;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和相似三角形的判定的相關(guān)知識可以得到問題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;相似三角形的判定方法:兩角對應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似; 兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS);三邊對應(yīng)成比例,兩三角形相似(SSS).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市在城市建設(shè)中,要折除舊煙囪AB(如圖所示),在煙囪正西方向的樓CD的頂端C,測得煙囪的頂端A的仰角為45°,底端B的俯角為30°,已量得DB=21m.

(1)在原圖上畫出點(diǎn)C望點(diǎn)A的仰角和點(diǎn)C望點(diǎn)B的俯角,并分別標(biāo)出仰角和俯角的大小;

(2)拆除時若讓煙囪向正東倒下,試問:距離煙囪正東35m遠(yuǎn)的一棵大樹是否被歪倒的煙囪砸著?請說明理由.(1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分∠ABC,

求證:∠A+C=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程2x2﹣(4k+2)x+2k2+1=0.
(1)當(dāng)k取何值時,方程有兩個不相等的實數(shù)根?
(2)當(dāng)k取何值時,方程有兩個相等的實數(shù)根?
(3)當(dāng)k取何值時,方程沒有實數(shù)根?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,△ADE是等邊三角形,B,C,D在同一直線上.

求證:(1)CE=AC+CD;(2)∠ECD=60°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計算錯誤的是( )

A. (-2)0=1 B. 28x4y2÷7x3=4xy2

C. (4xy2-6x2y+2xy)÷2xy=2y-3x D. (a-5)(a+3)=a2-2a-15

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某開發(fā)商要建一批住房,經(jīng)調(diào)查了解,若甲、乙兩隊分別單獨(dú)完成,則乙隊完成的天數(shù)是甲隊的1.5倍;若甲、乙兩隊合作,則需120天完成.

(1)甲、乙兩隊單獨(dú)完成各需多少天?

(2)施工過程中,開發(fā)商派兩名工程師全程監(jiān)督,需支付每人每天食宿費(fèi)150元.已知乙隊單獨(dú)施工,開發(fā)商每天需支付施工費(fèi)為10000元.現(xiàn)從甲、乙兩隊中選一隊單獨(dú)施工,若要使開發(fā)商選甲隊支付的總費(fèi)用不超過選乙隊的,則甲隊每天的施工費(fèi)最多為多少元?(總費(fèi)用=施工費(fèi)+工程師食宿費(fèi))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于(x1 , 0),(x2 , 0)兩點(diǎn),且0<x1<1,1<x2<2,與y軸交于(0,﹣2).下列結(jié)論:①2a+b>1; ②a+b>2;③a﹣b<2;④3a+b>0; ⑤a<﹣1.其中正確結(jié)論的個數(shù)為(
A.2
B.3
C.4
D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABE中,∠A=105°,AE的垂直平分線MNBE于點(diǎn)C,且AB+BC=BE,則∠B的度數(shù)是( 。

A. 45° B. 60° C. 50° D. 55°

查看答案和解析>>

同步練習(xí)冊答案