【題目】在平面直角坐標系中,已知點A(O,1),B(1,2),點P在軸上運動,當點P到A、B兩點的距離之差的絕對值最大時,該點記為點P1,當點P到A、B兩點的距離之和最小時,該點記為點P2,以P1P2為邊長的正方形的面積為

A. 1 B. C. D. 5

【答案】C

【解析】

由三角形兩邊之差小于第三邊可知,當A、B、P三點不共線時,|PA-PB|<AB,又因為A(0,1),B(1,2)兩點都在x軸同側(cè),則當A、B、P三點共線時,|PA-PB|=AB,即|PA-PB|≤AB,所以當點PA、B兩點距離之差的絕對值最大時,點P在直線AB上.先運用待定系數(shù)法求出直線AB的解析式,再令y=0,求出x的值即可得到點P1的坐標;點A關(guān)于x軸的對稱點為A',求得直線A'B的解析式,令y=0,即可得到點P2的坐標,進而得到以P1P2為邊長的正方形的面積.

由題意可知,當點PA、B兩點距離之差的絕對值最大時,點P在直線AB上.

設(shè)直線AB的解析式為y=kx+b,

A(0,1),B(1,2),

,解得,

y=x+1,

y=0,則0=x+1,

解得x=-1.

∴點P1的坐標是(-1,0).

∵點A關(guān)于x軸的對稱點A'的坐標為(0,-1),

設(shè)直線A'B的解析式為y=k'x+b',

A'(0,-1),B(1,2),

,解得,

y=3x1,

y=0,則0=3x1,

解得x=,

∴點P2的坐標是(,0).

∴以P1P2為邊長的正方形的面積為(+1)2,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某開發(fā)商要建一批住房,經(jīng)調(diào)查了解,若甲、乙兩隊分別單獨完成,則乙隊完成的天數(shù)是甲隊的1.5倍;若甲、乙兩隊合作,則需120天完成.

(1)甲、乙兩隊單獨完成各需多少天?

(2)施工過程中,開發(fā)商派兩名工程師全程監(jiān)督,需支付每人每天食宿費150元.已知乙隊單獨施工,開發(fā)商每天需支付施工費為10000元.現(xiàn)從甲、乙兩隊中選一隊單獨施工,若要使開發(fā)商選甲隊支付的總費用不超過選乙隊的,則甲隊每天的施工費最多為多少元?(總費用=施工費+工程師食宿費)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠ABC=60°,E是對角線AC上任意一點,F(xiàn)是線段BC延長線上一點,且CF=AE,連接BE、EF.

(1)如圖1,當E是線段AC的中點時,求證:BE=EF.

(2)如圖2,當點E不是線段AC的中點,其它條件不變時,請你判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABE中,∠A=105°,AE的垂直平分線MNBE于點C,且AB+BC=BE,則∠B的度數(shù)是(  )

A. 45° B. 60° C. 50° D. 55°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的邊BC在直線l上,AC⊥BC,且AC=BC,△EFP的邊FP也在直線l上,邊EF與邊AC重合,且EF=FP.

(1)在圖①中,請你通過觀察、測量、猜想,寫出AB與AP所滿足的數(shù)量關(guān)系和位置關(guān)系;

(2)將△EFP沿直線l向左平移到圖②的位置時,EP交AC于點Q,連接AP,BQ,猜想并寫出BQ與AP所滿足的數(shù)量關(guān)系和位置關(guān)系,請證明你的猜想;

(3)將△EFP沿直線l向左平移到圖③的位置時,EP的延長線交AC的延長線于點Q,連接AP,BQ,你認為(2)中所猜想的BQ與AP的數(shù)量關(guān)系與位置關(guān)系還成立嗎?若成立,給出證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)在一次愛心捐款活動中,全體同學(xué)積極踴躍捐款.現(xiàn)抽查了九年級(1)班全班同學(xué)捐款情況,并繪制出如下的統(tǒng)計表和統(tǒng)計圖:

求:(1)m=__________,n=__________;

(2)求學(xué)生捐款數(shù)目的眾數(shù)、中位數(shù)和平均數(shù);

(3)若該校有學(xué)生2500人,估計該校學(xué)生共捐款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售甲、乙兩種品牌的智能手機.這兩種手機的進價和售價如下表所示:

進價(元/部)

4400

2000

售價(元/部)

5000

2500

該商場計劃購進兩種手機若干部,共需14.8萬元,預(yù)計全部銷售后可獲毛利潤共2.7萬元.(毛利潤=(售價一進價)×銷售量)

(Ⅰ)該商場計劃購進甲、乙兩種手機各多少部?

(II)通過市場調(diào)研,該商場決定在原計劃的基礎(chǔ)上,減少甲種手機的購進數(shù)量,增加乙種手機的購進數(shù)量.已知乙種手機增加的數(shù)量是甲種手機減少的數(shù)量的3倍,而且用于購進這兩種手機的總資金不超過156萬元,該商場應(yīng)該怎樣進貨,使全部銷售后獲得的毛利潤最大?并求出最大毛利潤。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個動點,且滿足∠PAB=∠PBC,則線段CP長的最小值為(
A.
B.2
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠設(shè)門市部專賣某產(chǎn)品,該產(chǎn)品每件成本40元,從開業(yè)一段時間的每天銷售統(tǒng)計中,隨機抽取一部分情況如下表所示:

每件銷售價(元)

50

60

70

75

80

85

每天售出件數(shù)

300

240

180

150

120

90

假設(shè)當天定的售價是不變的,且每天銷售情況均服從這種規(guī)律.
(1)觀察這些統(tǒng)計數(shù)據(jù),找出每天售出件數(shù)y與每件售價x(元)之間的函數(shù)關(guān)系,并寫出該函數(shù)關(guān)系式.
(2)門市部原設(shè)有兩名營業(yè)員,但當銷售量較大時,在每天售出量超過168件時,則必須增派一名營業(yè)員才能保證營業(yè)有序進行,設(shè)營業(yè)員每人每天工資為40元.求每件產(chǎn)品應(yīng)定價多少元,才能使每天門市部純利潤最大(純利潤指的是收入總價款扣除成本及營業(yè)員工資后的余額,其它開支不計)

查看答案和解析>>

同步練習(xí)冊答案