【題目】如圖,以⊙O的弦AB為斜邊作Rt△ABC,C點(diǎn)在圓內(nèi),邊BC經(jīng)過圓心O,過A點(diǎn)作⊙O的切線AD.
(1)求證:∠DAC=2∠B;
(2)若sinB=,AC=6,求⊙O的半徑.
【答案】(1)詳見解析;(2).
【解析】
(1)連接AO,由AD為切線,根據(jù)切線的性質(zhì)得∠OAD=90°,從而由同角的余角相等得結(jié)論;
(2)設(shè)⊙O的半徑OA=r,求出BC=8,然后在Rt△ACO中根據(jù)勾股定理列方程可得結(jié)論.
(1)證明:連接OA,
∵AD是⊙O的切線,
∴OA⊥AD,
∴∠OAD=∠CAD+∠OAC=90°,
∵∠C=90°,
∴∠OAC+∠AOC=90°,
∴∠CAD=∠AOC,
∵OA=OB,
∴∠B=∠OAB,
∴∠CAD=∠AOC=∠B+∠OAB=2∠B;
(2)解:設(shè)OA=r,則OB=r,
在Rt△CAB中,sinB=,
∵AC=6,
∴AB=10,
∴BC=8,
在Rt△ACO中,由勾股定理得:AC2+CO2=AO2,
∴62+(8﹣r)2=r2,
解得:r=,
答:⊙O的半徑是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=k1x+b(k1、b為常數(shù),k1≠0)的圖象與反比例函數(shù)y2=(k2≠0)的圖象交于點(diǎn)A(m,1)與點(diǎn)B(﹣1,﹣4).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象說明,當(dāng)x為何值時(shí),k1x+b﹣<0;
(3)若動(dòng)點(diǎn)P是第一象限內(nèi)雙曲線上的點(diǎn)(不與點(diǎn)A重合),連接OP,過點(diǎn)P作y軸的平行線交直線AB于點(diǎn)C,連接OC,若△POC的面積為3,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】北京第一條地鐵線路于1971年1月15日正式開通運(yùn)營(yíng).截至2017年1月,北京地鐵共“金山銀山,不如綠水青山”.某市不斷推進(jìn)“森林城市”建設(shè),今春種植四類樹苗,園林部門從種植的這批樹苗中隨機(jī)抽取了4000棵,將各類樹苗的種植棵數(shù)繪制成扇形統(tǒng)計(jì)圖,將各類樹苗的成活棵數(shù)繪制成條形統(tǒng)計(jì)圖,經(jīng)統(tǒng)計(jì)松樹和楊樹的成活率較高,且楊樹的成活率為97%,根據(jù)圖表中的信息解答下列問題:
(1)扇形統(tǒng)計(jì)圖中松樹所對(duì)的圓心角為 度,并補(bǔ)全條形統(tǒng)計(jì)圖.
(2)該市今年共種樹16萬(wàn)棵,成活了約多少棵?
(3)園林部門決定明年從這四類樹苗中選兩類種植,請(qǐng)用列表法或樹狀圖求恰好選到成活率較高的兩類樹苗的概率.(松樹、楊樹、榆樹、柳樹分別用A,B,C,D表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示為二次函數(shù)的圖象,在下列選項(xiàng)中錯(cuò)誤的是( )
A.
B. 時(shí),隨的增大而增大
C.
D. 方程的根是,
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,拋物線y=x2+bx+c經(jīng)過A、B兩點(diǎn),A、B兩點(diǎn)的坐標(biāo)分別為(﹣1,0)、(0,﹣3).
(1)求拋物線的函數(shù)解析式;
(2)點(diǎn)E為拋物線的頂點(diǎn),點(diǎn)C為拋物線與x軸的另一交點(diǎn),點(diǎn)D為y軸上一點(diǎn),且DC=DE,求出點(diǎn)D的坐標(biāo);
(3)在第二問的條件下,在直線DE上存在點(diǎn)P,使得以C、D、P為頂點(diǎn)的三角形與△DOC相似,請(qǐng)你直接寫出所有滿足條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,對(duì)角線AC將正方形ABCD分成兩個(gè)等腰三角形,點(diǎn)E,F將對(duì)角線AC三等分,且AC=15,點(diǎn)P在正方形的邊上,則滿足PE+PF=5的點(diǎn)P的個(gè)數(shù)是( 。
A.0B.4C.8D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,, ,點(diǎn)為邊上的動(dòng)點(diǎn)(點(diǎn)不與點(diǎn),重合).以點(diǎn)為頂點(diǎn)作,射線交邊于點(diǎn),過點(diǎn)作交射線于,連接.
(1)求證:;
(2)當(dāng)時(shí)(如圖),求的長(zhǎng);
(3)點(diǎn)在邊上運(yùn)動(dòng)的過程中,是否存在某個(gè)位置,使得?若存在,求出此時(shí)的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】象棋是棋類益智游戲,中國(guó)象棋在中國(guó)有著三千多年的歷史,由于用具簡(jiǎn)單,趣味性強(qiáng),成為流行極為廣泛的棋藝活動(dòng).李凱和張萌利用象棋棋盤和棋子做游戲.李凱將四枚棋子反面朝上放在棋盤上,其中有兩個(gè)“兵”、一個(gè)“馬”、一個(gè)“士”,張萌隨機(jī)從這四枚棋子中摸一枚棋子,記下正漢字,然后再?gòu)氖O碌娜镀遄又须S機(jī)摸一枚.
(1)求張萌第一次摸到的棋子正面上的漢字是“兵”的概率;
(2)游戲規(guī)定:若張萌兩次摸到的棋子中有“士”,則張萌勝;否則,李凱勝.請(qǐng)你用樹狀圖或列表法求李凱勝的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017內(nèi)蒙古通遼市)如圖,物理教師為同學(xué)們演示單擺運(yùn)動(dòng),單擺左右擺動(dòng)中,在OA的位置時(shí)俯角∠EOA=30°,在OB的位置時(shí)俯角∠FOB=60°,若OC⊥EF,點(diǎn)A比點(diǎn)B高7cm.求:
(1)單擺的長(zhǎng)度(≈1.7);
(2)從點(diǎn)A擺動(dòng)到點(diǎn)B經(jīng)過的路徑長(zhǎng)(π≈3.1).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com