【題目】北京第一條地鐵線路于1971年1月15日正式開通運營.截至2017年1月,北京地鐵共“金山銀山,不如綠水青山”.某市不斷推進(jìn)“森林城市”建設(shè),今春種植四類樹苗,園林部門從種植的這批樹苗中隨機抽取了4000棵,將各類樹苗的種植棵數(shù)繪制成扇形統(tǒng)計圖,將各類樹苗的成活棵數(shù)繪制成條形統(tǒng)計圖,經(jīng)統(tǒng)計松樹和楊樹的成活率較高,且楊樹的成活率為97%,根據(jù)圖表中的信息解答下列問題:
(1)扇形統(tǒng)計圖中松樹所對的圓心角為 度,并補全條形統(tǒng)計圖.
(2)該市今年共種樹16萬棵,成活了約多少棵?
(3)園林部門決定明年從這四類樹苗中選兩類種植,請用列表法或樹狀圖求恰好選到成活率較高的兩類樹苗的概率.(松樹、楊樹、榆樹、柳樹分別用A,B,C,D表示)
【答案】(1)144,理由詳見解析;(2)成活了約15萬棵;(3).
【解析】
(1)求出“松樹”所占的百分比,即可求出“松樹”所占的圓心角的度數(shù),求出“楊樹”成活的棵數(shù)即可補全條形統(tǒng)計圖;
(2)求出樣本的總成活率,估計總體成活率,進(jìn)而求出成活的棵數(shù);
(3)用列表法列舉出所有等可能出現(xiàn)的情況,松樹、楊樹、榆樹、柳樹分別用A,B,C,D表示,從中找出“選到成活率較高的兩類樹苗,就A、B”的結(jié)果數(shù),進(jìn)而求出概率.
解:(1)松樹所對應(yīng)的圓心角度數(shù):360°×(1﹣15%﹣20%﹣25%)=144°,
楊樹成活的棵數(shù):4000×25%×97%=970(棵),
故答案為:144,補全條形統(tǒng)計圖如圖所示:
(2)160000×=150000(棵)
答:該市今年共種樹16萬棵,成活了約15萬棵;
(3)用列表法表示所有可能出現(xiàn)的結(jié)果如下:(松樹、楊樹、榆樹、柳樹分別用A,B,C,D表示)
共有12種等可能出現(xiàn)的結(jié)果數(shù),其中選中松樹和楊樹的有2種,
∴選到成活率較高的兩類樹苗的概率為=.
答:選到成活率較高的兩類樹苗的概率為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某大學(xué)生利用業(yè)余時間參與了一家網(wǎng)店經(jīng)營,銷售一種成本為30元/件的文化衫,根據(jù)以往的銷售經(jīng)驗,他整理出這種文化衫的售價y1(元/件),銷量y2(件)與第x(1≤x<90)天的函數(shù)圖象如圖所示(銷售利潤=(售價-成本)×銷量).
(1)求y1與y2的函數(shù)解析式.
(2)求每天的銷售利潤W與x的函數(shù)解析式.
(3)銷售這種文化衫的第多少天,銷售利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個不透明的盒子中放入四張卡片,每張卡片上都寫有一個數(shù)字,分別是2,1,0,1.卡片除數(shù)字不同外其它均相同,從中隨機抽取兩張卡片,抽取的兩張卡片上數(shù)字之積為 0的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點A、C的坐標(biāo)分別為(1,0)、(0,3),點B在x軸上.已知某二次函數(shù)的圖象經(jīng)過A、 B、C三點,且它的對稱軸為直線x=1.點D為直線BC下方的二次函數(shù)的圖象上的一個動點(點D與B、C不重合),過點D作y軸的平行線交BC于點E.
(1)求該二次函數(shù)的解析式;
(2)設(shè)點D的橫坐標(biāo)為m,用含m的代數(shù)式表示線段DE的長;
(3)求△DBC面積的最大值,并求出此時點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖示,在平面直角坐標(biāo)系中,二次函數(shù)()交軸于,,在軸上有一點,連接.
(1)求二次函數(shù)的表達(dá)式;
(2)點是第二象限內(nèi)的點拋物線上一動點
①求面積最大值并寫出此時點的坐標(biāo);
②若,求此時點坐標(biāo);
(3)連接,點是線段上的動點.連接,把線段繞著點順時針旋轉(zhuǎn)至,點是點的對應(yīng)點.當(dāng)動點從點運動到點,則動點所經(jīng)過的路徑長等于______(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線l1:y=kx+b與直線l2:y=2x﹣4的交點M的縱坐標(biāo)為2,且與直線y=﹣x﹣2交x軸于同一點.
(1)求直線l1的表達(dá)式;
(2)在給出的平面直角坐標(biāo)系中作出直線l1的圖象,并求出它與直線l2及x軸圍成圖形的面積;
(3)根據(jù)圖象,直接寫出關(guān)于x的不等式kx+b>0>2x﹣4的解集
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以⊙O的弦AB為斜邊作Rt△ABC,C點在圓內(nèi),邊BC經(jīng)過圓心O,過A點作⊙O的切線AD.
(1)求證:∠DAC=2∠B;
(2)若sinB=,AC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)的圖像在x軸下方的部分沿x軸翻折到x軸上方,圖像的其余部分保持不變,翻折后的圖像與原圖像x軸上方的部分組成一個形如“W”的新圖像,若直線y=-2x+b與該新圖像有兩個交點,則實數(shù)b的取值范圍是__________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com