【題目】如圖,△ABC中,∠ACB=90°,D是邊AB上一點(diǎn),且∠A=2∠DCB.E是BC邊上的一點(diǎn),以EC為直徑的⊙O經(jīng)過(guò)點(diǎn)D.
(1)求證:AB是⊙O的切線;
(2)若CD的弦心距為1,BE=EO,求BD的長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)BD=2.
【解析】試題分析:(1)連接OD,如圖1所示,由OD=OC,根據(jù)等邊對(duì)等角得到一對(duì)角相等,再由∠DOB為△COD的外角,利用三角形的外角等于與它不相鄰的兩個(gè)內(nèi)角之和,等量代換可得出∠DOB=2∠DCB,又∠A=2∠DCB,可得出∠A=∠DOB,又∠ACB=90°,可得出直角三角形ABC中兩銳角互余,等量代換可得出∠B與∠ODB互余,即OD垂直于BD,確定出AB為圓O的切線,得證;
(2)法1:過(guò)O作OM垂直于CD,根據(jù)垂徑定理得到M為DC的中點(diǎn),由BD垂直于OD,得到三角形BDO為直角三角形,再由BE=OE=OD,得到OD等于OB的一半,可得出∠B=30°,進(jìn)而確定出∠DOB=60°,又OD=OC,利用等邊對(duì)等角得到一對(duì)角相等,再由∠DOB為三角形DOC的外角,利用外角的性質(zhì)及等量代換可得出∠DCB=30°,在三角形CMO中,根據(jù)30°角所對(duì)的直角邊等于斜邊的一半得到OC=2OM,由弦心距OM的長(zhǎng)求出OC的長(zhǎng),進(jìn)而確定出OD及OB的長(zhǎng),利用勾股定理即可求出BD的長(zhǎng);
法2:過(guò)O作OM垂直于CD,連接ED,由垂徑定理得到M為CD的中點(diǎn),又O為EC的中點(diǎn),得到OM為三角形EDC的中位線,利用三角形中位線定理得到OM等于ED的一半,由弦心距OM的長(zhǎng)求出ED的長(zhǎng),再由BE=OE,得到ED為直角三角形DBO斜邊上的中線,利用直角三角形斜邊上的中線等于斜邊的一半,由DE的長(zhǎng)求出OB的長(zhǎng),再由OD及OB的長(zhǎng),利用勾股定理即可求出BD的長(zhǎng).
試題解析:(1)證明:連接OD,如圖1所示:
∵OD=OC,
∴∠DCB=∠ODC,
又∠DOB為△COD的外角,
∴∠DOB=∠DCB+∠ODC=2∠DCB,
又∵∠A=2∠DCB,
∴∠A=∠DOB,
∵∠ACB=90°,
∴∠A+∠B=90°,
∴∠DOB+∠B=90°,
∴∠BDO=90°,
∴OD⊥AB,
又∵D在⊙O上,
∴AB是⊙O的切線;
(2)解法一:
過(guò)點(diǎn)O作OM⊥CD于點(diǎn)M,如圖1,
∵OD=OE=BE=BO,∠BDO=90°,
∴∠B=30°,
∴∠DOB=60°,
∵OD=OC,
∴∠DCB=∠ODC,
又∵∠DOB為△ODC的外角,
∴∠DOB=∠DCB+∠ODC=2∠DCB,
∴∠DCB=30°,
∵在Rt△OCM中,∠DCB=30°,OM=1,
∴OC=2OM=2,
∴OD=2,BO=BE+OE=2OE=4,
∴在Rt△BDO中,根據(jù)勾股定理得:BD=;
解法二:
過(guò)點(diǎn)O作OM⊥CD于點(diǎn)M,連接DE,如圖2,
∵OM⊥CD,
∴CM=DM,又O為EC的中點(diǎn),
∴OM為△DCE的中位線,且OM=1,
∴DE=2OM=2,
∵在Rt△OCM中,∠DCB=30°,OM=1,
∴OC=2OM=2,
∵Rt△BDO中,OE=BE,
∴DE=BO,
∴BO=BE+OE=2OE=4,
∴OD=OE=2,
在Rt△BDO中,根據(jù)勾股定理得BD=.
考點(diǎn): 1.切線的判定;2.含30度角的直角三角形;3.垂徑定理;4圓周角定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)(如下圖),并規(guī)定:購(gòu)買(mǎi)100元的商品,就能獲得一次轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)的機(jī)會(huì),如果轉(zhuǎn)盤(pán)停止后,指針正好對(duì)準(zhǔn)紅、綠、黃、白區(qū)域,那么顧客就可以分別得到80元、30元、10元、0元的購(gòu)物券,憑購(gòu)物券仍然可以在商場(chǎng)購(gòu)物;如果顧客不愿意轉(zhuǎn)轉(zhuǎn)盤(pán),那么可以直接獲得購(gòu)物券10元.
(1)每轉(zhuǎn)動(dòng)一次轉(zhuǎn)盤(pán)所獲購(gòu)物券金額的平均數(shù)是多少?
(2)若在此商場(chǎng)購(gòu)買(mǎi)100元的貨物,那么你將選擇哪種方式獲得購(gòu)物券?
(3)小明在家里也做了一個(gè)同樣的轉(zhuǎn)盤(pán)做實(shí)驗(yàn),轉(zhuǎn)10次后共獲得購(gòu)物券96元,他說(shuō)還是不轉(zhuǎn)轉(zhuǎn)盤(pán)直接領(lǐng)取購(gòu)物券合算,你同意小明的說(shuō)法嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖已知:E是∠AOB的平分線上一點(diǎn),EC⊥OA,ED⊥OB,垂足分別為C、D.求證:
(1)∠ECD=∠EDC;
(2)OE是CD的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC,AB=AC=5,BC=6,若點(diǎn)P在邊AC上移動(dòng),則BP的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y1=-x+b的圖象交x軸于點(diǎn)A(3,0),與一次函數(shù)y2=x+1的圖象交于點(diǎn)B,
(1)求一次函數(shù)y1=-x+b的表達(dá)式;
(2)當(dāng)x取哪些值時(shí),0<y1<y2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,點(diǎn)D,E分別在邊AC,AB上,且AD=BE,BD,CE交于點(diǎn)P,CF⊥BD,垂足為點(diǎn)F.
(1)求證:BD=CE;
(2)若PF=3,求CP的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(閱讀材料)
南京市地鐵公司規(guī)定:自2019年3月31日起,普通成人持儲(chǔ)值卡乘坐地鐵出行,每個(gè)自然月內(nèi),達(dá)到規(guī)定消費(fèi)累計(jì)金額后的乘次,享受相應(yīng)的折扣優(yōu)惠(見(jiàn)圖).地鐵出行消費(fèi)累計(jì)金額月底清零,次月重新累計(jì).
比如:李老師二月份無(wú)儲(chǔ)值卡消費(fèi)260元,若采用新規(guī)持儲(chǔ)值卡消費(fèi),則需付費(fèi)150×0.95+50×0.9+60×0.8=235.5元.
(解決問(wèn)題)
甲、乙兩個(gè)成人二月份無(wú)儲(chǔ)值卡乘坐地鐵消費(fèi)金額合計(jì)300元(甲消費(fèi)金額超過(guò)150元,但不超過(guò)200元).若兩人采用新規(guī)持儲(chǔ)值卡消費(fèi),則共需付費(fèi)283.5元.求甲、乙二月份乘坐地鐵的消費(fèi)金額各是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把順次連接四邊形各邊中點(diǎn)所得的四邊形叫做中點(diǎn)四邊形.若一個(gè)任意四邊形的面積為a,則它的中點(diǎn)四邊形面積為( )
A.aB. C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B、C三點(diǎn)的坐標(biāo)分別為(-2,3)(-3,1)(-5,2),將△ABC先右平移3個(gè)單位,再向下平移1個(gè)單位得到△DEF.
(1)畫(huà)出△DEF,并寫(xiě)出點(diǎn)D,E,F的坐標(biāo);
(2)求△DEF的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com