【題目】如圖,已知ABC,按如下步驟作圖:

分別以A、C為圓心,以大于AC的長(zhǎng)為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;

連接MN,分別交AB、AC于點(diǎn)D、O;

過(guò)C作CEAB交MN于點(diǎn)E,連接AE、CD.

(1)求證:四邊形ADCE是菱形;

(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長(zhǎng)為18時(shí),求四邊形ADCE的面積.

【答案】(1)詳見(jiàn)解析;(2)24.

【解析】

(1)利用直線(xiàn)DE是線(xiàn)段AC的垂直平分線(xiàn),得出ACDE,即∠AOD=COE=90°,從而得出AOD≌△COE,即可得出四邊形ADCE是菱形.
(2)利用當(dāng)∠ACB=90°時(shí),ODBC,即有ADO∽△ABC,即可由相似三角形的性質(zhì)和勾股定理得出ODAO的長(zhǎng),即根據(jù)菱形的性質(zhì)得出四邊形ADCE的面積.

(1)證明:由題意可知:

∵分別以A、C為圓心,以大于AC的長(zhǎng)為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;

∴直線(xiàn)DE是線(xiàn)段AC的垂直平分線(xiàn),

ACDE,即∠AOD=COE=90°;

AD=CD、AO=CO,

又∵CEAB,

∴∠1=2,

AODCOE

∴△AOD≌△COE(AAS),

OD=OE,

A0=CO,DO=EO,

∴四邊形ADCE是平行四邊形,

又∵ACDE,

∴四邊形ADCE是菱形;

(2)解:當(dāng)∠ACB=90°時(shí),

ODBC,

即有ADO∽△ABC,

又∵BC=6,

OD=3,

又∵△ADC的周長(zhǎng)為18,

AD+AO=9,

AD=9﹣AO,

可得AO=4,

DE=6,AC=8,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠B90°,AC60cm,∠A60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/s的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/s的速度向點(diǎn)B勻速運(yùn)動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)點(diǎn)D,E運(yùn)動(dòng)的時(shí)間是ts0t≤15).過(guò)點(diǎn)DDFBC于點(diǎn)F,連接DEEF

1)求證:四邊形AEFD是平行四邊形;

2)當(dāng)t為何值時(shí),DEF為直角三角形?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)得鐵塔的高度,小瑩利用自制的測(cè)角儀,在C點(diǎn)測(cè)得塔頂E的仰角為45°,在D點(diǎn)測(cè)得塔頂E的仰角為60°,已知測(cè)角儀AC的高為1.6米,CD的長(zhǎng)為6米,CD所在的水平線(xiàn)CGEF于點(diǎn)G,鐵塔EF的高為________米.(結(jié)果用帶根號(hào)的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小敏思考解決如下問(wèn)題:

原題:如圖1,四邊形ABCD,,點(diǎn)P,Q分別在四邊形ABCD的邊BC,CD上,,求證:

______;

小敏進(jìn)行探索,如圖2,將點(diǎn)PQ的位置特殊化,使,,點(diǎn)E,F分別在邊BC,CD上,此時(shí)她證明了請(qǐng)你證明此時(shí)結(jié)論;

受以上的啟發(fā),在原題中,添加輔助線(xiàn):如圖3,作,,垂足分別為EF,請(qǐng)你繼續(xù)完成原題的證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,△ABC中,AB=AC,∠B、∠C的平分線(xiàn)交于O點(diǎn),過(guò)O點(diǎn)作EFBCABACE、F.

(1)圖①中有幾個(gè)等腰三角形?猜想:EFBE、CF之間有怎樣的關(guān)系.

(2)如圖②,ABAC,其他條件不變,圖中還有等腰三角形嗎?如果有,分別指出它們.在第(1)問(wèn)中EFBECF間的關(guān)系還存在嗎?

(3)如圖③,若△ABC中∠B的平分線(xiàn)BO與三角形外角平分線(xiàn)CO交于O,過(guò)O點(diǎn)作OEBCABE,交ACF.這時(shí)圖中還有等腰三角形嗎?EFBE、CF關(guān)系又如何?說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一個(gè)單位面積為1的方格紙上,A1A2A3,A3A4A5,A5A6A7……是斜邊在x軸上,且斜邊長(zhǎng)分別為24,6……的等腰直角三角形.若A1A2A3的頂點(diǎn)坐標(biāo)分別為A12,0),A21,-1),A30,0),則依圖中所示規(guī)律,點(diǎn)A2019的橫坐標(biāo)為(  )

A. 1010B. C. 1008D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:關(guān)于x的二次函數(shù)的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線(xiàn)的對(duì)稱(chēng)軸與x軸交于點(diǎn)D.

(1)求二次函數(shù)的表達(dá)式;

(2)y軸上是否存在一點(diǎn)P,使PBC為等腰三角形.若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);

(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在AB上向點(diǎn)B運(yùn)動(dòng),另一個(gè)點(diǎn)N從點(diǎn)D與點(diǎn)M同時(shí)出發(fā),以每秒2個(gè)單位的速度在拋物線(xiàn)的對(duì)稱(chēng)軸上運(yùn)動(dòng),當(dāng)點(diǎn)M 達(dá)點(diǎn)B時(shí),點(diǎn)M、N同時(shí)停止運(yùn)動(dòng),問(wèn)點(diǎn)M、N運(yùn)動(dòng)到何處時(shí),MNB面積最大,試求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O(0,0)、B(a,b),且ab滿(mǎn)足12a+a2+(b)2=0

1)求a,b的值;

2)若點(diǎn)Ax軸正半軸上,且OA=2,在平面內(nèi)有一動(dòng)點(diǎn)Q(不在x軸上),QO=mQA=n,QB=p,且p2=m2+n2,求∠OQA的度數(shù).

3)閱讀以下內(nèi)容:對(duì)于實(shí)數(shù)a、b(ab)20,∴a22ab+b20,

a2+b22ab

利用以上知識(shí),在(2)的條件下求△AOQ的面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】通過(guò)小學(xué)的學(xué)習(xí)我們知道,分?jǐn)?shù)可分為“真分?jǐn)?shù)”和“假分?jǐn)?shù)”,并且假分?jǐn)?shù)都可化為帶分?jǐn)?shù).類(lèi)比分?jǐn)?shù),對(duì)于分式也可以定義:對(duì)于只含有一個(gè)字母的分式,當(dāng)分子的次數(shù)大于或等于分母的次數(shù)時(shí),我們稱(chēng)之為“假分式”;當(dāng)分子的次數(shù)小于分母的次數(shù)時(shí),我們稱(chēng)之為“真分式”.類(lèi)似的,假分式也可以化為帶分式(即:整式與真分式的和的形式).

如:

解決下列問(wèn)題:

1)分式________分式(填“真”或“假”);

2)假分式可化為帶分式_________的形式;請(qǐng)寫(xiě)出你的推導(dǎo)過(guò)程;

3)如果分式的值為整數(shù),那么的整數(shù)值為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案