【題目】如圖,四邊形ABCD為正方形.點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(0,-3),反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C,一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)C,一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A.

1)求反比例函數(shù)與一次函數(shù)的解析式;

2)求點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).

【答案】1; ;(2 P點(diǎn)的坐標(biāo)為(25,)或(﹣25,

【解析】

1)根據(jù)正方形的性質(zhì)求出點(diǎn)C的坐標(biāo)為(5,-3),再將C點(diǎn)坐標(biāo)代入反比例函數(shù)中,運(yùn)用待定系數(shù)法求出反比例函數(shù)的解析式;同理,將點(diǎn)AC的坐標(biāo)代入一次函數(shù)中,運(yùn)用待定系數(shù)法求出一次函數(shù)函數(shù)的解析式.

2)設(shè)P點(diǎn)的坐標(biāo)為(xy),先由△OAP的面積恰好等于正方形ABCD的面積,列出關(guān)于x的方程,解方程求出x的值,再將x的值代入,即可求出P點(diǎn)的坐標(biāo).

解:(1點(diǎn)A的坐標(biāo)為(02),點(diǎn)B的坐標(biāo)為(0,-3),∴AB=5

四邊形ABCD為正方形,點(diǎn)C的坐標(biāo)為(5,-3).

反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)C,,解得k=15

反比例函數(shù)的解析式為

一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A,C,,解得

一次函數(shù)的解析式為

2)設(shè)P點(diǎn)的坐標(biāo)為(xy).

∵△OAP的面積恰好等于正方形ABCD的面積,,即

解得x=±25

當(dāng)x=25時(shí),;當(dāng)x=25時(shí),

∴P點(diǎn)的坐標(biāo)為(25)或(﹣25,).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,點(diǎn)從點(diǎn)沿邊,勻速運(yùn)動(dòng)到點(diǎn),過(guò)點(diǎn)于點(diǎn),線(xiàn)段,,則能夠反映之間函數(shù)關(guān)系的圖象大致是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與x軸交于點(diǎn)A(﹣1,0)和Bm0),且3m4,則下列說(shuō)法:①b0;②a+cb;③b24ac;④2b3c;⑤1,正確的是( 。

A.①②④B.①③⑤C.②③④D.②③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,的三個(gè)頂點(diǎn)坐標(biāo)分別為.

1)畫(huà)出,使關(guān)于點(diǎn)成中心對(duì)稱(chēng),并寫(xiě)出點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)_____________;

2)以原點(diǎn)為位似中心,位似比為12,在軸的左側(cè),畫(huà)出將放大后的,并寫(xiě)出點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)___________________;

3___________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知函數(shù)y=2x和函數(shù)的圖象交于A、B兩點(diǎn),過(guò)點(diǎn)AAE⊥x軸于點(diǎn)E,若△AOE的面積為4,P是坐標(biāo)平面上的點(diǎn),且以點(diǎn)B、OE、P為頂點(diǎn)的四邊形是平行四邊形,則滿(mǎn)足條件的P點(diǎn)坐標(biāo)是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,平面上七個(gè)點(diǎn),,,,圖中所有的連線(xiàn)長(zhǎng)均相等,則______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,四邊形ABCD的對(duì)角線(xiàn)ACBD相交于點(diǎn)E,AD=DC,DC2=DEDB,求證:

(1)BCE∽△ADE;

(2)ABBC=BDBE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為5的等邊三角形ABC中,M是高CH所在直線(xiàn)上的一個(gè)動(dòng)點(diǎn),連接MB,將線(xiàn)段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接HN.則在點(diǎn)M運(yùn)動(dòng)過(guò)程中,線(xiàn)段HN長(zhǎng)度的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在正方形ABCD中,GCD上一點(diǎn),延長(zhǎng)BCE,使CE=CG,連接BG并延長(zhǎng)交DEF.

(1)求證:△BCG≌△DCE;

(2)將△DCE繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到△DAE′,判斷四邊形E′BGD是什么特殊四邊形,并說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案