【題目】如圖,邊長(zhǎng)為5的等邊三角形ABC中,M是高CH所在直線上的一個(gè)動(dòng)點(diǎn),連接MB,將線段BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接HN.則在點(diǎn)M運(yùn)動(dòng)過程中,線段HN長(zhǎng)度的最小值是_____

【答案】1.25

【解析】

CB的中點(diǎn)G,連接MG,如圖,根據(jù)等邊三角形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)可得:∠HBN=∠GBM,HBBG,MBNB,然后利用SAS即可證明MBG≌△NBH,進(jìn)而可得HNMG,然后根據(jù)垂線段最短可得MGCH時(shí),MG最短,再根據(jù)∠BCH30°求解即可.

解:如圖,取BC的中點(diǎn)G,連接MG

∵旋轉(zhuǎn)角為60°,∴∠MBH+HBN60°,

ABC是等邊三角形,∴∠MBH+MBC=∠ABC60°,∴∠HBN=∠GBM

CH是等邊ABC的對(duì)稱軸,∴HBAB,∴HBBG

又∵MB旋轉(zhuǎn)到BN,∴BMBN

∴△MBG≌△NBHSAS),∴MGNH,

根據(jù)垂線段最短可知:當(dāng)MGCH時(shí),MG最短,即HN最短,

此時(shí)∵∠BCH×60°30°CGAB×52.5,

MGCG×2.51.25,∴HN1.25

故答案為:1.25

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)行垃圾分類和垃圾資源化利用,關(guān)系廣大人民群眾生活環(huán)境,關(guān)系節(jié)約使用資源,也是社會(huì)文明水平的一個(gè)重要體現(xiàn).某環(huán)保公司研發(fā)了甲、乙兩種智能設(shè)備,可利用最新技術(shù)將干垃圾進(jìn)行分選破碎制成固化成型燃料棒,干垃圾由此變身新型清潔燃料.某垃圾處理廠從環(huán)保公司購(gòu)入以上兩種智能設(shè)備若干,已知購(gòu)買甲型智能設(shè)備花費(fèi)萬元,購(gòu)買乙型智能設(shè)備花費(fèi)萬元,購(gòu)買的兩種設(shè)備數(shù)量相同,且兩種智能設(shè)備的單價(jià)和為萬元.

求甲、乙兩種智能設(shè)備單價(jià);

垃圾處理廠利用智能設(shè)備生產(chǎn)燃料棒,并將產(chǎn)品出售.已知燃料棒的成本由人力成本和物資成本兩部分組成,其中物資成本占總成本的,且生產(chǎn)每噸燃料棒所需人力成本比物資成本的倍還多.調(diào)查發(fā)現(xiàn),若燃料棒售價(jià)為每噸元,平均每天可售出噸,而當(dāng)銷售價(jià)每降低元,平均每天可多售出.垃圾處理廠想使這種燃料棒的銷售利潤(rùn)平均每天達(dá)到元,且保證售價(jià)在每噸元基礎(chǔ)上降價(jià)幅度不超過,求每噸燃料棒售價(jià)應(yīng)為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形.點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(0,-3),反比例函數(shù)的圖象經(jīng)過點(diǎn)C,一次函數(shù)的圖象經(jīng)過點(diǎn)C,一次函數(shù)的圖象經(jīng)過點(diǎn)A.

1)求反比例函數(shù)與一次函數(shù)的解析式;

2)求點(diǎn)P是反比例函數(shù)圖象上的一點(diǎn),△OAP的面積恰好等于正方形ABCD的面積,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)動(dòng)員將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時(shí)間ts)滿足二次函數(shù)關(guān)系,th的幾組對(duì)應(yīng)值如下表所示.

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

(1)求ht之間的函數(shù)關(guān)系式(不要求寫t的取值范圍);

(2)求小球飛行3s時(shí)的高度;

(3)問:小球的飛行高度能否達(dá)到22m?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC,點(diǎn)DE分別在邊AB、AC,DE、BC的延長(zhǎng)線相交于點(diǎn)F,

1)求證

2)當(dāng)AB=12,AC=9,AE=8時(shí)BD的長(zhǎng)與的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB45°,BC5AC2,DBC邊上的動(dòng)點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,連接EC

1)如圖a,求證:CEBC;

2)連接ED,MAC的中點(diǎn),NED的中點(diǎn),連接MN,如圖b

①寫出DE、ACMN三條線段的數(shù)量關(guān)系,并說明理由;

②在點(diǎn)D運(yùn)動(dòng)的過程中,當(dāng)BD的長(zhǎng)為何值時(shí),M,E兩點(diǎn)之間的距離最?最小值是   ,請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)相等,則稱點(diǎn)P為完美點(diǎn).已知二次函數(shù)的圖象上有且只有一個(gè)完美點(diǎn),且當(dāng)時(shí),函數(shù)的最小值為﹣3,最大值為1,則m的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了維護(hù)國(guó)家主權(quán)和海洋權(quán)力,海監(jiān)部門對(duì)我國(guó)領(lǐng)海實(shí)現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時(shí)50海里的速度向正東方航行,在處測(cè)得燈塔在北偏東方向上,繼續(xù)航行1小時(shí)到達(dá)處,此時(shí)測(cè)得燈塔在北偏東方向上.

(1)求的度數(shù);

(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,矩形ABCD的邊AB:BC3:2,點(diǎn)A3,0),B06)分別在x軸,y軸上,反比例函數(shù)(x0)的圖像經(jīng)過點(diǎn)D,則值為( )

A. 14 B. 14 C. 7 D. 7

查看答案和解析>>

同步練習(xí)冊(cè)答案