【題目】碼頭工人往一艘輪船上裝載貨物,裝完貨物所需時(shí)間(分)與裝載速度(噸 /分)之間的函數(shù)關(guān)系如圖所示.
(1) 這批貨物的質(zhì)量是多少?
(2) 直接寫出y與x之間的函數(shù)表達(dá)式;
(3) 現(xiàn)有一批貨物,要在2h內(nèi)裝載完成,碼頭工人每分鐘至少要裝載多少噸貨物?
【答案】(1)600t;(2);(3)5
【解析】
(1)根據(jù)函數(shù)圖象中的數(shù)據(jù)可以求得這批貨的質(zhì)量;
(2)設(shè)y與x的函數(shù)關(guān)系式是,代入函數(shù)圖象中的數(shù)據(jù)即可得出結(jié)果;
(3)利用函數(shù)關(guān)系式,當(dāng)y=120時(shí),得到x=5即可.
解:(1)由題意可得,
這批貨物的質(zhì)量是:1.5×400=600(t),
答:這批貨物的質(zhì)量是600t;
(2)設(shè)y與x的函數(shù)關(guān)系式是,
把(1.5,400)代入得:,
解得:k=600,
即y與x的函數(shù)關(guān)系式是;
(3)2h=120min,
當(dāng)y=120時(shí),x=,
答:碼頭工人每分鐘至少要裝載5噸貨物.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E,F分別是AD,BC邊上的點(diǎn),AE=CF,∠EFB=45°,若AB=5,BC=13,則AE的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,點(diǎn)E在CD邊上,點(diǎn)F在DC延長線上,AE=BF.
(1)求證:四邊形ABFE是平行四邊形;
(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形ABC的頂點(diǎn)A在x軸上,AB=AC,∠BAC=90°,且A(2,0)、B(3,3),BC交y軸于M,
(1)求點(diǎn)C的坐標(biāo);
(2)連接AM,求△AMB的面積;
(3)在x軸上有一動(dòng)點(diǎn)P,當(dāng)PB+PM的值最小時(shí),求此時(shí)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行數(shù):
-1、2、-4、8、-16、32、-64、……①
0、3、-3、9、-15、33、-63、……②
1、-5、7、-17、31、-65、127、……③
(1) 第①行的第8個(gè)數(shù)是___________,第①行第n個(gè)數(shù)是___________(用n的式子表示)
(2) 取第①、②、③行的第10個(gè)數(shù)分別記為a、b、c,求a-b+c的值
(3) 取每行數(shù)的第n個(gè)數(shù),這三個(gè)數(shù)中任意兩數(shù)之差的最大值為6146,則n=__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )
A. ∠1=∠3 B. 如果∠2=30°,則有AC∥DE
C. 如果∠2=30°,則有BC∥AD D. 如果∠2=30°,必有∠4=∠C
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)服裝廠加工同種型號(hào)的防護(hù)服,甲廠每天加工的數(shù)量是乙廠每天加工數(shù)量的1.5倍,兩廠各加工600套防護(hù)服,甲廠比乙廠要少用4天.
(1)求甲、乙兩廠每天各加工多少套防護(hù)服?
(2)已知甲、乙兩廠加工這種防護(hù)服每天的費(fèi)用分別是150元和120元,疫情期間,某醫(yī)院緊急需要3000套這種防護(hù)服,甲廠單獨(dú)加工一段時(shí)間后另有安排,剩下任務(wù)只能由乙單獨(dú)完成.如果總加工費(fèi)不超過6360元,那么甲廠至少要加工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,B,C三點(diǎn)在數(shù)軸上,點(diǎn)A表示的數(shù)為-10,點(diǎn)B表示的數(shù)為14,點(diǎn)C到點(diǎn)A和點(diǎn)B之間的距離相等.
(1)求A,B兩點(diǎn)之間的距離;
(2)求C點(diǎn)對(duì)應(yīng)的數(shù);
(3)甲、乙分別從A,B兩點(diǎn)同時(shí)相向運(yùn)動(dòng),甲的速度是1個(gè)單位長度/s,乙的速度是2個(gè)單位長度/s,求相遇點(diǎn)D對(duì)應(yīng)的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)P在CA的延長線上,∠CAD=45°.
(1)若AB=4,求弧CD的長.
(2)若弧BC=弧AD,AD=AP. 求證:PD是⊙O的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com