【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點(diǎn).
求一次函數(shù)與反比例函數(shù)的表達(dá)式;
求的面積;
根據(jù)所給條件,請直接寫出不等式的解集.
【答案】 ,; ;,.
【解析】
(1)把A(-2,1)代入反比例函數(shù)y=,求出m的值即可;把B(1,n)代入反比例函數(shù)的解析式可求出n,從而確定B點(diǎn)坐標(biāo)為(1,-2),然后利用待定系數(shù)法即可求出一次函數(shù)的解析式;
(2)設(shè)直線y=-x-1與x軸的交點(diǎn)為C,根據(jù)解析式求得C的坐標(biāo),然后根據(jù)S△ABC=S△OAC+S△OBC即可求得;
(3)觀察函數(shù)圖象得到當(dāng)-2<x<0或x>1時(shí),一次函數(shù)的圖象都在反比例函數(shù)的圖象的下方,即一次函數(shù)的值小于反比例函數(shù)的值.
把點(diǎn)代入反比例函數(shù)得:
,
解得:,
即反比例函數(shù)的解析式為:,
把點(diǎn)代入反比例函數(shù)得:
,
即點(diǎn)A的坐標(biāo)為:,點(diǎn)B的坐標(biāo)為:,
把點(diǎn)和點(diǎn)代入一次函數(shù)得:
,
解得:,
即一次函數(shù)的表達(dá)式為:,
把代入一次函數(shù)得:
,
解得:,
即點(diǎn)C的坐標(biāo)為:,OC的長為1,
點(diǎn)A到OC的距離為1,點(diǎn)B到OC的距離為2,
,
,
,
如圖可知:的解集為:,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠BAC=90°,過點(diǎn)B的直線MN∥AC,D為BC邊上一點(diǎn),連接AD,作DE⊥AD交MN于點(diǎn)E,連接AE.
(1)如圖①,當(dāng)∠ABC=45°時(shí),求證:AD=DE;理由;
(2)如圖②,當(dāng)∠ABC=30°時(shí),線段AD與DE有何數(shù)量關(guān)系?并請說明理由;
(3)當(dāng)∠ABC=α時(shí),請直接寫出線段AD與DE的數(shù)量關(guān)系.(用含α的三角函數(shù)表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AB⊥BC,點(diǎn)E在AB上,∠DEC=90°.
(1)求證:△ADE∽△BEC.
(2)若AD=1,BC=3,AE=2,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,以BC為邊向正方形內(nèi)部作等邊△BCE,連接AE并延長交CD于F,連接DE,下列結(jié)論:①AE=DE;②∠CEF=45°;③AE=EF;④△DEF∽△ABE,其中正確的結(jié)論共有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為△ABC內(nèi)一點(diǎn),E為△ABC外一點(diǎn),且∠ABC=∠DBE,∠3=∠4.
求證:(1)△ABD∽△CBE;
(2)△ABC∽△DBE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化,開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):
(1)開始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?
(2)一道數(shù)學(xué)競賽題,需要講16分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tan∠AOD=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=3,cos∠B=,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△AB'C,P為線段AB上的動點(diǎn),以點(diǎn)P為圓心,PA長為半徑作⊙P,當(dāng)⊙P與△A′B′C的一邊所在的直線相切時(shí),⊙P的半徑為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是由一些棱長為1的小立方塊所搭幾何體的三種視圖.若在所搭幾何體的基礎(chǔ)上(不改變原幾何體中小立方塊的位置),繼續(xù)添加相同的小立方塊,以搭成一個(gè)長方體,至少還需要________個(gè)小立方塊.最終搭成的長方體的表面積是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com