【題目】如圖,在邊長(zhǎng)為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,AB、CD相交于點(diǎn)O,則tanAOD=________.

【答案】2

【解析】首先連接BE,由題意易得BF=CF,ACO∽△BKO,然后由相似三角形的對(duì)應(yīng)邊成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:2,在RtOBF中,即可求得tanBOF的值,繼而求得答案.

如圖,連接BE,

∵四邊形BCEK是正方形,

KF=CF=CK,BF=BE,CK=BE,BECK,

BF=CF,

根據(jù)題意得:ACBK,

∴△ACO∽△BKO,

KO:CO=BK:AC=1:3,

KO:KF=1:2,

KO=OF=CF=BF,

RtPBF中,tanBOF==2,

∵∠AOD=BOF,

tanAOD=2.

故答案為:2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O△ABC的外接圓,AB為直徑,∠BAC的平行線交⊙O與點(diǎn)D,過(guò)點(diǎn)D的切線分別交AB、AC的延長(zhǎng)線與點(diǎn)EF

1)求證:AF⊥EF

2)小強(qiáng)同學(xué)通過(guò)探究發(fā)現(xiàn):AF+CF=AB,請(qǐng)你幫忙小強(qiáng)同學(xué)證明這一結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABCDEC重合放置,其中∠C=90°.若固定△ABC,將△DEC繞點(diǎn)C旋轉(zhuǎn).

1)當(dāng)△DEC統(tǒng)點(diǎn)C旋轉(zhuǎn)到點(diǎn)D恰好落在AB邊上時(shí),如圖2

當(dāng)∠B=E=30°時(shí),此時(shí)旋轉(zhuǎn)角的大小為 ;

當(dāng)∠B=E時(shí),此時(shí)旋轉(zhuǎn)角的大小為 (用含a的式子表示)

2)當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到如圖3所示的位置時(shí),小楊同學(xué)猜想:△BDC的面積與△AEC的面積相等,試判斷小楊同學(xué)的猜想是否正確,若正確,請(qǐng)你證明小楊同學(xué)的猜想.若不正確,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,數(shù)軸上的點(diǎn)A、B、C、D、E表示連續(xù)的五個(gè)整數(shù),對(duì)應(yīng)數(shù)分別為a、b、c、d、e.

(1)若a+e=0,則代數(shù)式b+c+d=  

(2)若a是最小的正整數(shù),先化簡(jiǎn),再求值:;

(3)若a+b+c+d=2,數(shù)軸上的點(diǎn)M表示的實(shí)數(shù)為m(ma、b、c、d、e不同),且滿足MA+MD=3,則m的范圍是  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了解學(xué)生上學(xué)的交通方式,現(xiàn)從全校學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行我上學(xué)的交通方式問(wèn)卷調(diào)查,規(guī)定每人必須并且只能在乘車步行、騎車其他四項(xiàng)中選擇一項(xiàng),并根據(jù)統(tǒng)計(jì)結(jié)果繪制成如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)解答下列問(wèn)題:

1)在這次調(diào)查中,樣本容量為  ;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3乘車所對(duì)應(yīng)的扇形圓心角為 °;

4)若該學(xué)校共有2000名學(xué)生,試估計(jì)該學(xué)校學(xué)生中選擇步行方式的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線過(guò)A(2,3),B(4,3),C(6,﹣5)三點(diǎn).

(1)求拋物線的表達(dá)式;

(2)如圖,拋物線上一點(diǎn)D在線段AC的上方,DEABAC于點(diǎn)E,若滿足,求點(diǎn)D的坐標(biāo);

(3)如圖②,F為拋物線頂點(diǎn),過(guò)A作直線lAB,若點(diǎn)P在直線l上運(yùn)動(dòng),點(diǎn)Qx軸上運(yùn)動(dòng),是否存在這樣的點(diǎn)PQ,使得以B、P、Q為頂點(diǎn)的三角形與ABF相似,若存在,求P、Q的坐標(biāo),并求此時(shí)BPQ的面積;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程的兩個(gè)根是,那么,反過(guò)來(lái),如果,那么以為兩根的一元二次方程是.請(qǐng)根據(jù)以上結(jié)論,解決下列問(wèn)題:

(1)已知關(guān)于x的方程+mx+n=0(n≠0),求出個(gè)一元二次方程,使它的兩根分別是已知方程兩根的倒數(shù).

(2)已知a、b滿足-15a-5=0,-15b-5=0,求的值.

(3)已知a、b、c均為實(shí)數(shù),且a+b+c=0,abc=16,求正數(shù)C的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C是弧BD的中點(diǎn),CE⊥AB于點(diǎn)F.

(1)求證:BF=CF;

(2)若CD=3cm,AC=4cm,求⊙O的半徑及CE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)課上,李老師出示了如下框中的題目.

在等邊三角形ABC中,點(diǎn)E在AB上,點(diǎn)D在CB的延長(zhǎng)線上,且ED=EC,如圖.試確定線段AE與DB的大小關(guān)系,并說(shuō)明理由.

小敏與同桌小聰討論后,進(jìn)行了如下解答:

(1)特殊情況,探索結(jié)論

當(dāng)點(diǎn)E為AB的中點(diǎn)時(shí),如圖1,確定線段AE與的DB大小關(guān)系.請(qǐng)你直接寫出結(jié)論:

AE DB(填“>”,“<”或“=”).

圖1 2

(2)特例啟發(fā),解答題目

解:題目中,AE與DB的大小關(guān)系是:AE DB(填“>”,“<”或“=”).

理由如下:如圖2,過(guò)點(diǎn)E作EFBC,交AC于點(diǎn)F.

(請(qǐng)你完成以下解答過(guò)程)

(3)拓展結(jié)論,設(shè)計(jì)新題

在等邊三角形ABC中,點(diǎn)E在直線AB上,點(diǎn)D在直線BC上,且ED=EC.若ABC的邊長(zhǎng)為1,AE=2,求CD的長(zhǎng)(請(qǐng)你直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案