【題目】魔術(shù)師為大家表演魔術(shù). 他請觀眾想一個數(shù),然后將這個數(shù)按以下步驟操作:

魔術(shù)師立刻說出觀眾想的那個數(shù).

1)如果小明想的數(shù)是-2,那么他告訴魔術(shù)師的結(jié)果應(yīng)該是_________________

2)如果小聰想了一個數(shù)并告訴魔術(shù)師結(jié)果為9,那么魔術(shù)師立刻說出小聰想的那個數(shù)是 ;請解釋魔術(shù)師是如何求出那個數(shù)的?

【答案】13;(24;解釋見解析.

【解析】

1)按照運算程序代入計算得出結(jié)果即可;

2)假設(shè)這個數(shù),根據(jù)運算步驟,求出結(jié)果等于9,得出一元一次方程,即可求出;設(shè)觀眾所想數(shù)字為a,代入化簡,找出規(guī)律即可.

1)解:

故答案為:3

2)設(shè)這個數(shù)為x,

解得:x=4

故答案為:4

設(shè)觀眾所想數(shù)字為a,

只要將給出的數(shù)字減去5,就是他們想的那個數(shù).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長一定的正方形ABCD,Q是CD上一動點,AQ交BD于點M,過M作MN⊥AQ交BC于N點,作NP⊥BD于點P,連接NQ,下列結(jié)論:①AM=MN;

②MP=BD;③BN+DQ=NQ;④為定值。其中一定成立的是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCACD中,∠B=D,tanB=,BC=5,CD=3,BCA=90°﹣BCD,則AD=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+3a0)經(jīng)過點A1,0),B0),且與y軸相交于點C

(1)求這條拋物線的表達(dá)式;

(2)求∠ACB的度數(shù);

(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DEAC,當(dāng)△DCE與△AOC相似時,求點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】操作思考:如圖1,在平面直角坐標(biāo)系中,等腰的直角頂點C在原點,將其繞著點O旋轉(zhuǎn),若頂點A恰好落在點的長為______;B的坐標(biāo)為______直接寫結(jié)果

感悟應(yīng)用:如圖2,在平面直角坐標(biāo)系中,將等腰如圖放置,直角頂點,點,試求直線AB的函數(shù)表達(dá)式.

拓展研究:如圖3,在直角坐標(biāo)系中,點,過點B軸,垂足為點A,作軸,垂足為點CP是線段BC上的一個動點,點Q是直線上一動點問是否存在以點P為直角頂點的等腰,若存在,請求出此時P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ADBCBAC=70°,DEAC于點E,D=20°.

(1)求∠B的度數(shù),并判斷△ABC的形狀;

(2)若延長線段DE恰好過點B,試說明DB是∠ABC的平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線x軸有兩個不同的交點。

1的取值范圍;

2)若為正整數(shù),且該拋物線與x軸的交點都是整數(shù)點,求的值

3)如果反比例函數(shù)的圖象與(2)中的拋物線在第一象限內(nèi)的交點的橫坐標(biāo)為,且滿足1<<2,請直接寫出m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩條輪船同時從港口A出發(fā),甲輪船以每小時30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時15海里的速度沿著正東方向行進(jìn),1小時后,甲船接到命令要與乙船會合,于是甲船改變了行進(jìn)的速度,沿著東南方向航行,結(jié)果在小島C處與乙船相遇.假設(shè)乙船的速度和航向保持不變,求:

1)港口A與小島C之間的距離;

2)甲輪船后來的速度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,點O是邊AC上一個動點,過O作直線MNBC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F

1)求證:OEOF;

2)當(dāng)點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.

查看答案和解析>>

同步練習(xí)冊答案