【題目】已知拋物線與x軸有兩個不同的交點。
(1)求的取值范圍;
(2)若為正整數(shù),且該拋物線與x軸的交點都是整數(shù)點,求的值;
(3)如果反比例函數(shù)的圖象與(2)中的拋物線在第一象限內(nèi)的交點的橫坐標為,且滿足1<<2,請直接寫出m的取值范圍。
【答案】(1) (2) k=2 (3) 3<m<16
【解析】試題分析: 拋物線與x軸有兩個不同的交點,則,即可求出的取值范圍;
(2)根據(jù)(1)的結(jié)論,且為正整數(shù),求出的值,將代入拋物線解析式,檢驗與軸的交點都是否都是整數(shù)點;
(3)根據(jù)當(dāng)時,對于 隨著的增大而增大,再利用和2時的值得出的取值范圍.
試題解析:(1)拋物線與x軸有兩個不同的交點,
,
,
解得;
(2)且為正整數(shù),
或1,
當(dāng)時, ,不合題意,舍去,
當(dāng)時, ,與x軸的兩個交點是(-2,0)與(0,0),符合題意,
所以,
(3)當(dāng)時,對于 隨著的增大而增大,
當(dāng)時, 此時,
當(dāng)時, 此時,
m的取值范圍是: ,
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,∠BAC=2∠C,∠BAC的平分線AE與∠ABC的平分線BD相交于點F,F(xiàn)G∥AC,聯(lián)結(jié)DG.
(1)求證:BFBC=ABBD;
(2)求證:四邊形ADGF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電視臺的一檔娛樂性節(jié)目中,在游戲PK環(huán)節(jié),為了隨機分選游戲雙方的組員,主持人設(shè)計了以下游戲:用不透明的白布包住三根顏色長短相同的細繩AA1、BB1、CC1,只露出它們的頭和尾(如圖所示),由甲、乙兩位嘉賓分別從白布兩端各選一根細繩,并拉出,若兩人選中同一根細繩,則兩人同隊,否則互為反方隊員.
(1)若甲嘉賓從中任意選擇一根細繩拉出,求他恰好抽出細繩AA1的概率;
(2)請用畫樹狀圖法或列表法,求甲、乙兩位嘉賓能分為同隊的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】魔術(shù)師為大家表演魔術(shù). 他請觀眾想一個數(shù),然后將這個數(shù)按以下步驟操作:
魔術(shù)師立刻說出觀眾想的那個數(shù).
(1)如果小明想的數(shù)是-2,那么他告訴魔術(shù)師的結(jié)果應(yīng)該是_________________;
(2)如果小聰想了一個數(shù)并告訴魔術(shù)師結(jié)果為9,那么魔術(shù)師立刻說出小聰想的那個數(shù)是 ;請解釋魔術(shù)師是如何求出那個數(shù)的?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,以點A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點,再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點P,作射線AP,交CD于點M。
(1)若∠ACD=114°,求∠MAB的度數(shù);
(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(-4, ),B(-1,2)是一次函數(shù)y=kx+b與反比例函數(shù)y= (m≠0,m<0)圖象的兩個交點,AC⊥x軸于C,BD⊥y軸于D。
(1)、根據(jù)圖象直接回答:在第二象限內(nèi),當(dāng)x取何值時,一次函數(shù)大于反比例函數(shù)的值?
(2)、求一次函數(shù)解析式及m的值;
(3)、P是線段AB上的一點,連接PC,PD,若△PCA和△PDB面積相等,求點P坐標。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.
(1)判斷BE與CF的數(shù)量關(guān)系,并說明理由;
(2)如果AB=8,AC=6,求AE、BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=8,BC=6,P是AC上一點,過P作PD⊥AB于點D,將△APD繞PD的中點旋轉(zhuǎn)180°得到△EPD.(設(shè)AP=x)
(1)若點E落在邊BC上,求AP的長;
(2)當(dāng)AP為何值時,△EDB為等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在四邊形ABCD中,AB∥CD,∠B=90°,點P在BC邊上,當(dāng)∠APD=90° 時,可知△ABP∽△PCD.(不要求證明)
(1)探究:如圖②,在四邊形ABCD中,點P在BC邊上,當(dāng)∠B=∠C=∠APD時,求證:△ABP∽△PCD.
(2)拓展:如圖③,在△ABC中,點P是邊BC的中點,點D、E分別在邊AB、AC上若∠B=∠C=∠DPE=45°,BC=8,CE=6,則DE的長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com