【題目】如圖,在△ABC和△ACD中,∠B=∠D,tanB=,BC=5,CD=3,∠BCA=90°﹣∠BCD,則AD=_____.
【答案】
【解析】解:在BC上取一點F,使BF=CD=3,連接AF,
∴CF=BC﹣BF=5﹣3=2,
過F作FG⊥AB于G,
∵tanB== ,
設(shè)FG=x,BG=2x,則BF=x,
∴x=3,
x=,
即FG=,
延長AC至E,連接BD,
∵∠BCA=90°﹣∠BCD,
∴2∠BCA+∠BCD=180°,
∵∠BCA+∠BCD+∠DCE=180°,
∴∠BCA=∠DCE,
∵∠ABC=∠ADC,
∴A、B、D、C四點共圓,
∴∠DCE=∠ABD,∠BCA=∠ADB,
∴∠ABD=∠ADB,
∴AB=AD,
在△ABF和△ADC中,
∵ ,
∴△ABF≌△ADC(SAS),
∴AF=AC,
過A作AH⊥BC于H,
∴FH=HC=FC=1,
由勾股定理得:AB2=BH2+AH2=42+AH2①,
S△ABF=ABGF=BFAH,
∴AB=3AH,
∴AH=,
∴AH2=②,
把②代入①得:AB2=16+,
解得:AB=,
∵AB>0,
∴AD=AB=2,
科目:初中數(shù)學 來源: 題型:
【題目】沙坪壩區(qū)2017年已經(jīng)成功創(chuàng)建國家衛(wèi)生城區(qū),現(xiàn)在正全力爭創(chuàng)全國文明城區(qū)(簡稱“創(chuàng)文”),某街道積極響應(yīng)“創(chuàng)文”活動,投入一定資金用于綠化一塊閑置空地,購買了甲、乙兩種樹木共72棵,其中甲種樹木每棵90元,乙種樹木每棵80元,共用去資金6160元.
(1)求甲、乙兩種樹木各購買了多少棵?
(2)經(jīng)過一段時間后,種植的這批樹木成活率高,綠化效果好,該街道決定再購買一批這兩種樹木綠化另一塊閑置空地,兩種樹木的購買數(shù)量均與第一批相同,購買時發(fā)現(xiàn)甲種樹木單價上漲了,乙種樹木單價下降了,且總費用不超過6804元,求的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P是正方形ABCD的對角線BD上一點,PE⊥BC于點E,PF⊥CD于點F,連接EF,給出下列五個結(jié)論:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC,其中正確結(jié)論的序號是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某餐廳中,一張桌子可坐6人,有如圖所示的兩種擺放方式:
(1)當有n張桌子時,兩種擺放方式各能坐多少人?
(2)一天中午餐廳要接待98位顧客共同就餐,但餐廳只有25張這樣的餐桌.若你是這個餐廳的經(jīng)理,你打算選擇哪種方式來擺放餐桌?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,OE平分∠AOD交CD于E,OF⊥EO,OG⊥CD,∠D=50°,則下列結(jié)論:①∠AOE=60°;②∠DOF=25°;③∠GOE=∠DOF;④OF平分∠BOD,其中正確的個數(shù)是( )
A. 1個B. 2個C. 3個D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某網(wǎng)店銷售甲、乙兩種羽毛球,已知甲種羽毛球每筒的售價比乙種羽毛球每筒的售價多15元,健民體育活動中心從該網(wǎng)店購買了2筒甲種羽毛球和3筒乙種羽毛球,共花費255元.
(1)該網(wǎng)店甲、乙兩種羽毛球每筒的售價各是多少元?
(2)根據(jù)健民體育活動中心消費者的需求量,活動中心決定用不超過2550元錢購進甲、乙兩種羽毛球共50筒,那么最多可以購進多少筒甲種羽毛球?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列一段文字,然后回答下列問題.
已知在平面內(nèi)有兩點P1(x1,y1)、P2(x2,y2),其兩點間的距離P1P2=,同時,當兩點所在的直線在坐標軸或平行于坐標軸或垂直于坐標軸時,兩點間距離公式可化簡為|x2﹣x1|或|y2﹣y1|.已知一個三角形各頂點坐標為D(1,6)、E(4,2),平面直角坐標系中,在x軸上找一點P,使PD+PE的長度最短,則PD+PE的最短長度為__________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=x2+bx+c經(jīng)過點(-1,8)并與x軸交于A,B兩點,且點B坐標為(3,0).
(1)求拋物線的表達式;
(2)若拋物線與y軸交于點C,頂點為點P,求△CPB的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點D,E分別在△ABC的邊AC,BD上,BD,CE交于點F,連接AF,∠FAE=∠FAD,F(xiàn)E=FD.
(1)如圖1,若∠AEF=∠ADF,求證:AE=AD;
(2)如圖2,若∠AEF≠∠ADF,F(xiàn)B平分∠ABC,求∠BAC的度數(shù);
(3)在(2)的條件下,如圖3,點G在BE上,∠CFG=∠AFB若AG=6,△ABC的周長為20,求BC長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com