【題目】先閱讀,再解答.
我們在判斷點(-7,20)是否在直線y=2x+6上時,常用的方法是:把x=-7代入y=2x+6中,由2×(-7)+6=-8≠20,判斷出點(-7,20)不在直線y=2x+6上.小明由此方法并根據(jù)“兩點確定一條直線”,推斷出點A(1,2),B(3,4),C(-1,6)三點可以確定一個圓,你認(rèn)為他的推斷正確嗎?請你利用上述方法說明理由.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y1=的圖像與一次函數(shù)y2=kx+b的圖象交于兩點A(-2,1)、B(a,-2).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)若一次函數(shù)y2=kx+b的圖象交y軸于點C,求△AOB的面積(O為坐標(biāo)原點);
(3)求使y1>y2時x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下材料,并按要求完成相應(yīng)的任務(wù).
在初中數(shù)學(xué)課本中重點介紹了提公因式法和運用公式法兩種因式分解的方法,其中運用公式法即運用平方差公式:a2-b2=(a+b)(a-b)和完全平方公式:a2±2ab+b2=(a±b)2進行分解因式,能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(shù)(或式)的平方和的形式,另一項是這兩個數(shù)(或式)的積的2倍.當(dāng)一個二次三項式不能直接運用完全平方公式分解因式時,可應(yīng)用下面方法分解因式,先將多項式ax2+bx+c(a≠0)變形為a(x+m)2+n的形式,我們把這樣的變形方法叫做多項式ax2+bx+c的配方法.再運用多項式的配方法及平方差公式能對一些多項式進行分解因式.
例如:x2+8x+7
=x2+8x+16-16+7
=(x+4)2-9
=(x+4+3)(x+4-3)
=(x+7)(x+1)
根據(jù)以上材料,完成相應(yīng)的任務(wù):
(1)利用“多項式的配方法”將x2+2x-3化成a(x+m)2+n的形式為_______;
(2)請你利用上述方法因式分解:
①x2+6x+8;
②x2-6x-7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當(dāng)點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB為⊙O的直徑,AB=2,AD和BE是圓O的兩條切線,A、B為切點,過圓上一點C作⊙O的切線CF,分別交AD、BE于點M、N,連接AC、CB,若∠ABC=30°,則AM= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在△ABC中,點A的坐標(biāo)為(﹣4,3),點B的坐標(biāo)為(﹣3,1),BC=2,BC∥x軸.
(1)畫出△ABC關(guān)于y軸對稱的圖形△A1B1C1;并寫出A1,B1,C1的坐標(biāo);
(2)求以點A、B、B1、A1為頂點的四邊形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸、y軸分別交于A,B兩點,以AB為邊在第二象限內(nèi)作正方形ABCD,則D點坐標(biāo)是_______;在y軸上有一個動點M,當(dāng)的周長值最小時,則這個最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知2a-1與a+5是m的平方根,求m的值;
(2)若的整數(shù)部分為,小數(shù)部分為,求的值;
(3)若與|b-|互為相反數(shù),解關(guān)于x的方程(2a+4)x2+b2+6=0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com