【題目】小帆同學(xué)根據(jù)函數(shù)的學(xué)習(xí)經(jīng)驗(yàn),對(duì)函數(shù)進(jìn)行探究,已知函數(shù)過(guò),

1)求函數(shù)解析式;

2)如圖1,在平面直角坐標(biāo)系中畫的圖象,根據(jù)函數(shù)圖象,寫出函數(shù)的一條性質(zhì)    ;

3)結(jié)合函數(shù)圖象回答下列問(wèn)題:

①方程的近似解的取值范圍(精確到個(gè)位)    ;

②若一次函數(shù)有且僅有兩個(gè)交點(diǎn),則的取值范圍是    

【答案】1;(2)圖象見詳解,當(dāng)時(shí),函數(shù)有最大值,函數(shù)無(wú)最小值;(3)①;②

【解析】

1)根據(jù)待定系數(shù)法,即可求解;

2)畫出反比例函數(shù)圖象和二次函數(shù)的圖象,即可得到函數(shù)的性質(zhì);

3)①畫出函數(shù)y1y=的圖象,它們的交點(diǎn)的橫坐標(biāo),就是方程的解,進(jìn)而即可得到解的取值范圍;

②結(jié)合一次函數(shù)的圖象,即可求解.

1)將點(diǎn),代入,

可得,解得

,

將點(diǎn)代入,

可得,解得,

;

2)函數(shù)圖象如圖所示,由圖象可知:當(dāng)時(shí),函數(shù)有最大值,函數(shù)無(wú)最小值,

故答案是:當(dāng)時(shí),函數(shù)有最大值,函數(shù)無(wú)最小值;

3)①畫出y=的圖象,可得函數(shù)y1y=的圖象的交點(diǎn)位置,如圖所示,

∴方程的近似解的取值范圍(精確到個(gè)位)是:,

故答案是:

②由題意可知:的圖象過(guò)點(diǎn)(0,2)

當(dāng)k0時(shí),一次函數(shù)有且僅有兩個(gè)交點(diǎn),

當(dāng)的圖象與的圖象相切時(shí),一次函數(shù)有且僅有兩個(gè)交點(diǎn),

=有兩個(gè)相等的根,即:=,

k=

綜上所述:

故答案是:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,航拍無(wú)人機(jī)從A處測(cè)得一幢建筑物頂部B處的仰角為45°、底部C處的俯角為65°,此時(shí)航拍無(wú)人機(jī)A處與該建筑物的水平距離AD80米.求該建筑物的高度BC(精確到1米).(參考數(shù)據(jù):sin65°=0.91,cos65°=0.42,tan65°=2.14)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,AC=3,AB=4,D為斜邊BC的中點(diǎn),E為AB上一個(gè)動(dòng)點(diǎn),將△ABC沿直線DE折疊,A,C的對(duì)應(yīng)點(diǎn)分別為,交BC于點(diǎn)F,若△BEF為直角三角形,則BE的長(zhǎng)度為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將大小相同的正三角形按如圖所示的規(guī)律拼圖案,其中第①個(gè)圖案中有6個(gè)小三角形和1個(gè)正六邊形;第②個(gè)圖案中有10個(gè)小三角形和2個(gè)正六邊形;第③個(gè)圖案中有14個(gè)小三角形和3個(gè)正六邊形;;按此規(guī)律排列下去,已知一個(gè)小三角形的面積為a,一個(gè)正六邊形的面積為b,則第⑧個(gè)圖案中所有的小三角形和正六邊形的面積之和為____________(結(jié)果用含a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】寒假期間,小明和好朋友一起前往三亞旅游.他們租住的賓館坐落在坡度為的斜坡上.賓館高為129米.某天,小明在賓館頂樓的海景房處向外看風(fēng)景,發(fā)現(xiàn)賓館前有一座雕像(雕像的高度忽略不計(jì)),已知雕像距離海岸線的距離260米,與賓館的水平距離為36米,遠(yuǎn)處海面上一艘即將靠岸的輪船的俯角為.則輪船距離海岸線的距離的長(zhǎng)為(  )

(參考數(shù)據(jù):,)

A.262B.212C.244D.276

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為(,1),下列結(jié)論:其中正確的個(gè)數(shù)是(  )

①a0;

②b0;

③c0;

;

⑤a+b+c0

A.1 個(gè)B.2 個(gè)C.3 個(gè)D.4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線BCyx軸于點(diǎn)B,點(diǎn)Ax軸正半軸上,OC為△ABC的中線,C的坐標(biāo)為(m,

1)求線段CO的長(zhǎng);

2)點(diǎn)DOC的延長(zhǎng)線上,連接AD,點(diǎn)EAD的中點(diǎn),連接CE,設(shè)點(diǎn)D的橫坐標(biāo)為t,△CDE的面積為S,求St的函數(shù)解析式;

3)在(2)的條件下,點(diǎn)F為射線BC上一點(diǎn),連接DB、DF,且∠FDB=∠OBD,CE,求此時(shí)S值及點(diǎn)F坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,對(duì)角線ACBD相交于點(diǎn)O,點(diǎn)EBC上的一個(gè)動(dòng)點(diǎn),連接DE,交AC于點(diǎn)F

1)如圖①,當(dāng)時(shí),求的值;

2)如圖②,當(dāng)點(diǎn)EBC的中點(diǎn)時(shí),過(guò)點(diǎn)FFGBC于點(diǎn)G,求證:CG=BG

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在RtOAB,OAB=90°,BOA=30°,AB=2.若以O為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將RtOAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.

1)求點(diǎn)C的坐標(biāo);

2)若拋物線y=ax2+bxa≠0)經(jīng)過(guò)C、A兩點(diǎn),求此拋物線的解析式;

3)若拋物線的對(duì)稱軸與OB交于點(diǎn)D,點(diǎn)P為線段DB上一點(diǎn),過(guò)Py軸的平行線,交拋物線于點(diǎn)M.問(wèn):是否存在這樣的點(diǎn)P,使得四邊形CDPM為等腰梯形,若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案