【題目】如圖,在正方形ABCD中,對角線ACBD相交于點O,點EBC上的一個動點,連接DE,交AC于點F

1)如圖①,當時,求的值;

2)如圖②,當點EBC的中點時,過點FFGBC于點G,求證:CG=BG

【答案】1=;(2)證明見解析.

【解析】

1)根據(jù)正方形的性質(zhì)和相似三角形的判定定理,得△CEF∽△ADF,可得=,進而即可得到結(jié)論;

2)由ADCB,點EBC的中點,得△EFC∽△DFACFAF=ECAD,FG//AB,得CGBG=CFAF,進而即可得到結(jié)論.

1)∵,

=

∵四邊形ABCD是正方形,

ADBC,AD=BC

∴△CEF∽△ADF,

=,

==

==;

2)∵ADCB,點EBC的中點,

∴△EFC∽△DFA

CF:AF=EC:AD=12,

FGBC,

FG//AB,

CG:BG=CF:AF=12,

CG=BG

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系 中,函數(shù)的圖象與直線交于點A(3,m).

(1)求k、m的值;

(2)已知點P(n,n)(n>0),過點P作平行于軸的直線,交直線y=x-2于點M,過點P作平行于y軸的直線,交函數(shù) 的圖象于點N.

①當n=1時,判斷線段PM與PN的數(shù)量關(guān)系,并說明理由;

②若PN≥PM,結(jié)合函數(shù)的圖象,直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小帆同學根據(jù)函數(shù)的學習經(jīng)驗,對函數(shù)進行探究,已知函數(shù)過,,

1)求函數(shù)解析式;

2)如圖1,在平面直角坐標系中畫的圖象,根據(jù)函數(shù)圖象,寫出函數(shù)的一條性質(zhì)    ;

3)結(jié)合函數(shù)圖象回答下列問題:

①方程的近似解的取值范圍(精確到個位)    

②若一次函數(shù)有且僅有兩個交點,則的取值范圍是    

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC平分∠BCD,AC⊥AB,EBC的中點,AD⊥AE

1)求證:AC2=CD·BC;

2)過EEG⊥AB,并延長EG至點K,使EK=EB

若點H是點D關(guān)于AC的對稱點,點FAC的中點,求證:FH⊥GH;

∠B=30°,求證:四邊形AKEC是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ΔABC中,AC15BC18,sinC=,DAC上一個動點(不運動至點AC),DDEBC,交ABE,過DDFBC,垂足為F,連結(jié)BD,設(shè)CDx

1)用含x的代數(shù)式分別表示DFBF;

2)如果梯形EBFD的面積為S,求S關(guān)于x的函數(shù)關(guān)系式;

3)如果△BDF的面積為S1,△BDE的面積為S2,那么x為何值時,S12S2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB是圓O的直徑,弦CDAB,垂足為H,與AC平行的圓O的一條切線交CD的延長線于點M,交AB的延長線于點E,切點為F,連接AF交CD于點N.

(1)求證:CA=CN;

(2)連接DF,若cosDFA=,AN=,求圓O的直徑的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線與軸,軸分別交于點,.拋物線經(jīng)過點,將點向右平移個單位長度,得到點

1)求點的坐標和拋物線的對稱軸;

2)若拋物線與線段恰有一個公共點,結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,O是對角線BD的中點,過點O的直線EF分別交DABC的延長線于E,F

1)求證:AECF

2)若AEBC,試探究線段OC與線段DF之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在中,以為圓心,長為半徑畫弧交于點,再分別以點、為圓心,大于為半徑畫弧,兩弧交于一點,連結(jié)于點,連結(jié).若,,則四邊形的面積為____

查看答案和解析>>

同步練習冊答案