【題目】如圖,在△ABC中,ABAC,以AB為直徑的O分別交AC、BC于點(diǎn)DE,點(diǎn)FAC的延長線上,且∠CBFCAB

1)求證:直線BFO的切線;

2)若AB5,sinBAD,求AD的長;

3)試探究FBFD、FA之間的關(guān)系,并證明.

【答案】1)見解析;(2;(3,見解析.

【解析】

1)連接AE,利用直徑所對(duì)的圓周角是直角,從而判定直角三角形,利用直角三角形兩銳角相等得到直角,從而證明∠ABF=90°

2)運(yùn)用三角函數(shù)解直角三角形,并用勾股定理求出AD.
3)利用已知條件證得ABF∽△BDF,就可以得出三條線段F之間的關(guān)系.

解:(1)證明:連結(jié).

的直徑

,

∴直線的切線.

2)連接,則為直角三角形.

由勾股定理可得;

3

證明:∵

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,以點(diǎn)A為圓心、AB的長為半徑畫弧交AD于點(diǎn)F,再分別以點(diǎn)B,F為圓心、大于BF的長為半徑畫弧,兩弧交于點(diǎn)M,作射線AMBC于點(diǎn)E,連接EF.下列結(jié)論中不一定成立的是(  )

A. BEEFB. EFCDC. AE平分∠BEFD. ABAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為弘揚(yáng)中華傳統(tǒng)文化,我市某中學(xué)決定根據(jù)學(xué)生的興趣愛好組建課外興趣小組,因此學(xué)校隨機(jī)抽取了部分同學(xué)的興趣愛好進(jìn)行調(diào)查,將收集的數(shù)據(jù)整理并繪制成下列兩幅統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,完成下列問題:

(1)學(xué)校這次調(diào)查共抽取了   名學(xué)生;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)在扇形統(tǒng)計(jì)圖中,戲曲所在扇形的圓心角度數(shù)為   

(4)設(shè)該校共有學(xué)生2000名,請(qǐng)你估計(jì)該校有多少名學(xué)生喜歡書法?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電視臺(tái)為了解本地區(qū)電視節(jié)目的收視情況,對(duì)部分市民開展了你最喜愛的電視節(jié)目的問卷調(diào)查(每人只填寫一項(xiàng)),根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計(jì)圖(如圖所示),根據(jù)要求回答下列問題:

(1)本次問卷調(diào)查共調(diào)查了________名觀眾;圖②中最喜愛新聞節(jié)目的人數(shù)占調(diào)查總?cè)藬?shù)的百分比為________;

(2)補(bǔ)全圖①中的條形統(tǒng)計(jì)圖;

(3)現(xiàn)有最喜愛新聞節(jié)目(記為),“體育節(jié)目(記為),“綜藝節(jié)目(記為),“科普節(jié)目(記為)的觀眾各一名,電視臺(tái)要從四人中隨機(jī)抽取兩人參加聯(lián)誼活動(dòng),請(qǐng)用列表或畫樹狀圖的方法,求出恰好抽到最喜愛兩位觀眾的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解八年級(jí)500名學(xué)生的身體素質(zhì)情況,體育老師從中隨機(jī)抽取50名學(xué)生進(jìn)行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制出如下頻數(shù)分布表和頻數(shù)分布直方圖(不完整):

組別

次數(shù)x

頻數(shù)(人數(shù))

1

80x100

6

2

100x120

8

3

120x140

   

4

140x160

18

5

160x180

6

完成下列問題:

1)請(qǐng)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

2)這個(gè)樣本數(shù)據(jù)的中位數(shù)落在第   組;次數(shù)在140x160這組的頻率為   ;

3)若八年級(jí)學(xué)生一分鐘跳繩次數(shù)(x)達(dá)標(biāo)要求是:x120不合格;x120合格,試問該年級(jí)合格的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們把11,2,35,813,21,,這組數(shù)稱為斐波那契數(shù)列,為了進(jìn)一步研究,依次以這列數(shù)為半徑作90°圓弧 ,,得到斐波那契螺旋線,然后順次連結(jié)P1P2,P2P3,P3P4,,得到螺旋折線(如圖),已知點(diǎn)P1(0,1)P2(1,0)P3(0,-1),則該折線上的點(diǎn)P9的坐標(biāo)為(

A. (6,24)B. (6,25)C. (5,24)D. (525)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線yax22x+c的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)A、B的坐標(biāo)分別為(1,0)(3,0),點(diǎn)D為拋物線的頂點(diǎn),拋物線的對(duì)稱軸與直線BC相交于點(diǎn)E.

1)求拋物線的解析式和點(diǎn)C的坐標(biāo);

2)點(diǎn)P是直線BC下方的拋物線上一動(dòng)點(diǎn),當(dāng)△PBC的面積最大時(shí),請(qǐng)求出P點(diǎn)的坐標(biāo)和△PBC的最大面積;

3)點(diǎn)Q是線段BD上的一動(dòng)點(diǎn),將△DEQ沿邊EQ翻折得到,是否存在點(diǎn)Q使得BEQ的重疊部分圖形為直角三角形?若存在,請(qǐng)直接寫出BQ的長,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小麗暑期參加工廠社會(huì)實(shí)踐活動(dòng),師傅將他們工作第一周每天生產(chǎn)的合格產(chǎn)品的個(gè)數(shù)整理成如表兩組數(shù)據(jù),那么關(guān)于他們工作第一周每天生產(chǎn)的合格產(chǎn)品個(gè)數(shù),下列說法中正確的是(

小明

2

6

7

7

8

小麗

2

3

4

8

8

A. 小明的平均數(shù)小于小麗的平均數(shù)

B. 兩人的中位數(shù)相同

C. 兩人的眾數(shù)相同

D. 小明的方差小于小麗的方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某工廠與兩地有鐵路相連,該工廠從地購買原材料,制成產(chǎn)品銷往. 已知每噸進(jìn)價(jià)為600元(含加工費(fèi)),加工過程中1噸原料可生產(chǎn)產(chǎn)品噸,當(dāng)預(yù)計(jì)銷售產(chǎn)品不超過120噸時(shí),每噸售價(jià)1600元,超過120噸,每增加1噸,銷售所有產(chǎn)品的價(jià)格降低2. 設(shè)該工廠有噸產(chǎn)品銷往. (利潤=售價(jià)進(jìn)價(jià)運(yùn)費(fèi))

1)用的代數(shù)式表示購買的原材料有 .

2)從地購買原材料并加工制成產(chǎn)品銷往地后,若總運(yùn)費(fèi)為9600元,求的值,并直接寫出這批產(chǎn)品全部銷售后的總利潤.

3)現(xiàn)工廠銷往地的產(chǎn)品至少120噸,且每噸售價(jià)不得低于1440元,記銷完產(chǎn)品的總利潤為元,求關(guān)于的函數(shù)表達(dá)式,及最大總利潤.

查看答案和解析>>

同步練習(xí)冊(cè)答案