【題目】如圖,某工廠與兩地有鐵路相連,該工廠從地購買原材料,制成產(chǎn)品銷往. 已知每噸進(jìn)價(jià)為600元(含加工費(fèi)),加工過程中1噸原料可生產(chǎn)產(chǎn)品噸,當(dāng)預(yù)計(jì)銷售產(chǎn)品不超過120噸時(shí),每噸售價(jià)1600元,超過120噸,每增加1噸,銷售所有產(chǎn)品的價(jià)格降低2. 設(shè)該工廠有噸產(chǎn)品銷往. (利潤=售價(jià)進(jìn)價(jià)運(yùn)費(fèi))

1)用的代數(shù)式表示購買的原材料有 .

2)從地購買原材料并加工制成產(chǎn)品銷往地后,若總運(yùn)費(fèi)為9600元,求的值,并直接寫出這批產(chǎn)品全部銷售后的總利潤.

3)現(xiàn)工廠銷往地的產(chǎn)品至少120噸,且每噸售價(jià)不得低于1440元,記銷完產(chǎn)品的總利潤為元,求關(guān)于的函數(shù)表達(dá)式,及最大總利潤.

【答案】(1);(2)的值為60噸,且這批產(chǎn)品全部銷售后的總利潤為38400元;(3),其最大的利潤為96000

【解析】

1)根據(jù)題意列式計(jì)算即可;
2)根據(jù)題意列方程即可得到結(jié)論;
3)設(shè)產(chǎn)品的售價(jià)為y元,根據(jù)題意函數(shù)解析式,然后根據(jù)二次函數(shù)的性質(zhì)即可得到結(jié)論.

解:(1

2

解得

總利潤為38400.

所以的值為60噸,且這批產(chǎn)品全部銷售后的總利潤為38400.

3)設(shè)產(chǎn)品的售價(jià)為元,由題意得,

當(dāng)時(shí),不在范圍內(nèi),

當(dāng)時(shí),的增大而增大,

所以當(dāng)時(shí),有最大值為96000.

答:關(guān)于的函數(shù)關(guān)系式為:,其最大的利潤為96000.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,以AB為直徑的O分別交AC、BC于點(diǎn)D、E,點(diǎn)FAC的延長(zhǎng)線上,且∠CBFCAB

1)求證:直線BFO的切線;

2)若AB5sinBAD,求AD的長(zhǎng);

3)試探究FB、FDFA之間的關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D、E分別在ACD的邊ABAC上,已知DEBC,DEDB

(1)請(qǐng)用直尺和圓規(guī)在圖中畫出點(diǎn)D和點(diǎn)E(保留作圖痕跡,不要求寫作法),并證明所作的線段DE是符合題目要求的;

(2)若AB=7,BC=3,請(qǐng)求出DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由7個(gè)同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。

A. 主視圖改變,俯視圖改變 B. 左視圖改變,俯視圖改變

C. 俯視圖不變,左視圖改變 D. 主視圖不變,左視圖不變

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,地面BD上兩根等長(zhǎng)立柱AB,CD之間懸掛一根近似成拋物線y= x2x+3的繩子.

(1)求繩子最低點(diǎn)離地面的距離;

(2)因?qū)嶋H需要,在離AB為3米的位置處用一根立柱MN撐起繩子(如圖2),使左邊拋物線F1的最低點(diǎn)距MN為1米,離地面1.8米,求MN的長(zhǎng);

(3)將立柱MN的長(zhǎng)度提升為3米,通過調(diào)整MN的位置,使拋物線F2對(duì)應(yīng)函數(shù)的二次項(xiàng)系數(shù)始終為,設(shè)MN離AB的距離為m,拋物線F2的頂點(diǎn)離地面距離為k,當(dāng)2k2.5時(shí),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形中,點(diǎn)邊的中點(diǎn),交于點(diǎn),交于點(diǎn),則下列結(jié)論:①;②;③;④,其中正確的答案是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB<AD,D=30°,CD=4,以AB為直徑的⊙OBC于點(diǎn)E,則陰影部分的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某塔觀光層的最外沿點(diǎn)E為蹦極項(xiàng)目的起跳點(diǎn).已知點(diǎn)E離塔的中軸線AB的距離OE為10米,塔高AB為123米(AB垂直地面BC),在地面C處測(cè)得點(diǎn)E的仰角α=45°,從點(diǎn)C沿CB方向前行40米到達(dá)D點(diǎn),在D處測(cè)得塔尖A的仰角β=60°,求點(diǎn)E離地面的高度EF.(結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)O上一點(diǎn),以O為圓心,為半徑的圓分別交于點(diǎn),點(diǎn)D是弧的中點(diǎn).

1)試判斷直線的位置關(guān)系,并說明理由;

2)若,求弧的長(zhǎng)度(結(jié)果保留

查看答案和解析>>

同步練習(xí)冊(cè)答案