【題目】如圖,點(diǎn)P為直徑BA延長(zhǎng)線上一點(diǎn),D為圓上一點(diǎn),BHPDHBD恰好平分∠PBH,BH交⊙OC,連接CD,OD

1)求證:PD為⊙O的切線;

2)若CD=2,∠ABD=30°,求⊙O的直徑.

【答案】(1)見(jiàn)解析;(2)⊙O的直徑的長(zhǎng)為4

【解析】

1)利用∠1=3,∠1=2,得到∠2=3,則可證明BHOD,利用平行線的性質(zhì)得到ODPH,從而證得PD為⊙O的切線;

2)連接OC,如圖,先證明OCB為等邊三角形得到∠BOC=60°,再利用平行線的性質(zhì)得到∠BOD=120°,所以∠DOC=60°,然后判定OCD為等邊三角形,則OD=CD=2,從而得到⊙O的直徑的長(zhǎng).

1)證明:∵OB=OD,

∴∠1=3,

∵∠1=2

∴∠2=3,

BHOD,

BHPH,

ODPH,

D為圓上一點(diǎn),

PD為⊙O的切線;

2)解:連接OC,如圖,

∵∠1=30°,

∴∠2=3=30°,

∴∠OBC=60°,

∴△OCB為等邊三角形,

∴∠BOC=60°,

BCOD,

∴∠BOD=180°-OBC=120°,

∴∠DOC=60°

OC=OD,

∴△OCD為等邊三角形,

OD=CD=2,

∴⊙O的直徑的長(zhǎng)為4

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=﹣x2+bx+c經(jīng)過(guò)點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).

(1)求拋物線的解析式;

(2)如圖1,P為線段BC上一點(diǎn),過(guò)點(diǎn)Py軸平行線,交拋物線于點(diǎn)D,當(dāng)△BDC的面積最大時(shí),求點(diǎn)P的坐標(biāo);

(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),M(m,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC=90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個(gè)圖形可分割為若干個(gè)都與它相似的圖形,則稱(chēng)這個(gè)圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個(gè)四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個(gè)小正方形中,每個(gè)正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過(guò)點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個(gè)與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個(gè)矩形ABCD是自相似圖形,其中長(zhǎng)AD=a,寬AB=b(a>b).

請(qǐng)從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個(gè)全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個(gè)全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個(gè)全等矩形,再將剩余的部分橫向分割成3個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個(gè)全等矩形,再將剩余的部分橫向分割成n個(gè)全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】課外閱讀是提高學(xué)生素養(yǎng)的重要途徑,亞光初中為了了解學(xué)校學(xué)生的閱讀情況,組織調(diào)查組對(duì)全校三個(gè)年級(jí)共1500名學(xué)生進(jìn)行了抽樣調(diào)查,抽取的樣本容量為300。已知該校有初一學(xué)生600名,初二學(xué)生500名,初三學(xué)生400名。

(1)為使調(diào)查的結(jié)果更加準(zhǔn)確地反映全校的總體情況,應(yīng)分別在初一年級(jí)隨機(jī)抽取 人;在初二年級(jí)隨機(jī)抽取 人;在初三年級(jí)隨機(jī)抽取 請(qǐng)直接填空。

(2)調(diào)查組對(duì)本校學(xué)生課外閱讀量的統(tǒng)計(jì)結(jié)果分別用扇形統(tǒng)計(jì)圖和頻數(shù)分布直方圖表示如下,請(qǐng)根據(jù)上統(tǒng)計(jì)圖,計(jì)算樣本中各類(lèi)閱讀量的人數(shù),并補(bǔ)全頻數(shù)分布直方圖。

(3)根據(jù)(2)的調(diào)查結(jié)果,從該校中隨機(jī)抽取一名學(xué)生,他最大可能的閱讀量是多少本?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是菱形ABCD的對(duì)角線.

1)請(qǐng)用直尺和圓規(guī)作AB的垂直平分線EF,垂足為點(diǎn)E,交AD于點(diǎn)F;(不要求寫(xiě)作法,保留作圖痕跡)

2)在(1)的條件下,連接BF,若∠CBD=75°,求∠DBF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開(kāi)機(jī)加熱時(shí)每分鐘上升10,加熱100,停止加熱,水溫開(kāi)始下降,此時(shí)水溫()與開(kāi)機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至30,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開(kāi)機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30時(shí),接通電源后,水溫y()和時(shí)間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(shí)(8:25)能喝到不小于70的水,則接通電源的時(shí)間可以是當(dāng)天上午的 ).

A.7:00 B.7:10 C.7:25 D.7:35

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線MN是線段BC的垂直平分線,垂足為O,P為射線OM上的一點(diǎn),連接BP,PC.將線段PB繞點(diǎn)P逆時(shí)針旋轉(zhuǎn),得到線段PQPQPC不重合),旋轉(zhuǎn)角為α0°<α180°)直線CQMN與點(diǎn)D

1)如圖1,當(dāng)α30°,且點(diǎn)P與點(diǎn)O重合時(shí),∠CDM的度數(shù)是   ;

2)如圖2,且點(diǎn)P與點(diǎn)O不重合.

①當(dāng)α120°時(shí),求∠CDM的度數(shù);

②用含α的代數(shù)式表示∠CDM的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】鮮豐水果店計(jì)劃用/盒的進(jìn)價(jià)購(gòu)進(jìn)一款水果禮盒以備銷(xiāo)售.

據(jù)調(diào)查,當(dāng)該種水果禮盒的售價(jià)為/盒時(shí),月銷(xiāo)量為盒,每盒售價(jià)每增長(zhǎng)元,月銷(xiāo)量就相應(yīng)減少盒,若使水果禮盒的月銷(xiāo)量不低于盒,每盒售價(jià)應(yīng)不高于多少元?

在實(shí)際銷(xiāo)售時(shí),由于天氣和運(yùn)輸?shù)脑,每盒水果禮盒的進(jìn)價(jià)提高了,而每盒水果禮盒的售價(jià)比(1)中最高售價(jià)減少了,月銷(xiāo)量比(1)中最低月銷(xiāo)量盒增加了,結(jié)果該月水果店銷(xiāo)售該水果禮盒的利潤(rùn)達(dá)到了元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兄弟兩人騎馬進(jìn)城,全程51,馬每小時(shí)行12,但只能由一個(gè)人騎.哥哥每小時(shí)步行5,弟弟每小時(shí)步行4.兩人輪換騎馬和步行,騎馬者走過(guò)一段距離就下鞍拴馬(下鞍拴馬的時(shí)間忽略不計(jì)),然后獨(dú)自步行,而步行者到達(dá)此地,再上馬前進(jìn).若他們?cè)缟?/span>800出發(fā),并且同時(shí)到達(dá)城門(mén),那么他們到達(dá)的時(shí)間是_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案