【題目】教室里的飲水機(jī)接通電源就進(jìn)入自動(dòng)程序,開機(jī)加熱時(shí)每分鐘上升10℃,加熱100℃,停止加熱,水溫開始下降,此時(shí)水溫(℃)與開機(jī)后用時(shí)(min)成反比例關(guān)系.直至水溫降至30℃,飲水機(jī)關(guān)機(jī).飲水機(jī)關(guān)機(jī)后即刻自動(dòng)開機(jī),重復(fù)上述自動(dòng)程序.若在水溫為30℃時(shí),接通電源后,水溫y(℃)和時(shí)間(min)的關(guān)系如圖,為了在上午第一節(jié)下課時(shí)(8:25)能喝到不小于70℃的水,則接通電源的時(shí)間可以是當(dāng)天上午的( ).
A.7:00 B.7:10 C.7:25 D.7:35
【答案】B.
【解析】
試題首先應(yīng)用待定系數(shù)法求出兩個(gè)函數(shù)的解析式,即y=10x+30(0≤x≤7),,所以飲水機(jī)的一個(gè)循環(huán)周期為分鐘.當(dāng)y=70時(shí),10x+30=70,解得x=4,,解得x=10,即在每個(gè)循環(huán)周期內(nèi),在4≤x≤10時(shí)間段內(nèi)水溫不低于70℃.
逐一分析如下:選項(xiàng)A:7:00到8:25之間有85分鐘,,不在4≤x≤10時(shí)間段內(nèi),故不可行;
選項(xiàng)B:7:10到8:25之間有75分鐘,,在4≤x≤10時(shí)間段內(nèi),故可行;
選項(xiàng)C:7:25到8:25之間有60分鐘,,不在4≤x≤10時(shí)間段內(nèi),故不可行;
選項(xiàng)D:7:35到8:25之間有50分鐘,,不在4≤x≤10時(shí)間段內(nèi),故不可行;
綜上所述,只有7:10符合題意.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)5次數(shù)學(xué)選拔賽的成績統(tǒng)計(jì)如下表,他們5次考試的總成績相同,請同學(xué)們完成下列問題:
第1 次 | 第2 次 | 第 3次 | 第 4次 | 第5 次 | |
甲成績 | 90 | 40 | 70 | 40 | 60 |
乙成績 | 70 | 50 | 70 | 70 |
(1)統(tǒng)計(jì)表中,求的值,甲同學(xué)成績的極差為多少;
(2)小穎計(jì)算了甲同學(xué)的成績平均數(shù)為60,方差是[(90﹣60)2+(40﹣60)2+(70﹣60)2+(40﹣60)2+(60﹣60)2]=360.
請你求出乙同學(xué)成績的平均數(shù)和方差;
(3)從平均數(shù)和方差的角度分析,甲乙兩位同學(xué)誰的成績更穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,點(diǎn)D,E分別在AB,BC上,∠EAD=∠EDA,點(diǎn)F為DE的延長線與AC的延長線的交點(diǎn).
(1)求證:DE=EF;
(2)判斷BD和CF的數(shù)量關(guān)系,并說明理由;
(3)若AB=3,AE=,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象與x軸交于不同的兩點(diǎn)A(x1,0),B(x2,0).
(1)求k的取值范圍;
(2)若AB=2,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓柱體的體積不變,當(dāng)它的高h(yuǎn)=12.5cm時(shí),底面積S=20cm2.
(1)求S與h之間的函數(shù)解析式;
(2)畫出函數(shù)圖象;
(3)當(dāng)圓柱體的高為5cm,7cm時(shí),比較底面積S的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形紙片ABCD中,已知AB=2,BC=,點(diǎn)E在邊CD上移動(dòng),連接AE,將多邊形ABCE沿直線AE翻折,得到多邊形AB′C′E,點(diǎn)B、C的對應(yīng)點(diǎn)分別為點(diǎn)B′、C′.
(1)當(dāng)點(diǎn)E與點(diǎn)C重合時(shí),求DF的長;
(2)若B′C′分別交邊AD,CD于點(diǎn)F,G,且∠DAE=22.5°,求△DFG的面積;
(3)如果點(diǎn)M為CD的中點(diǎn),那么在點(diǎn)E從點(diǎn)C移動(dòng)到點(diǎn)D的過程中,求C′M的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2=的圖象交于點(diǎn)A(﹣1,3)、B(n,﹣1).
(1)求反比例函數(shù)的解析式;
(2)當(dāng)y1>y2時(shí),直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠B=10°,∠ACB=20°,AB=4cm,△ABC逆時(shí)針旋轉(zhuǎn)一定角度后與△ADE重合,且點(diǎn)C恰好成為AD的中點(diǎn).
(1)指出旋轉(zhuǎn)中心,并求出旋轉(zhuǎn)的度數(shù);
(2)求出∠BAE的度數(shù)和AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com