14.如圖,在矩形ABCD中,對角線AC、BD交于點(diǎn)O,AE⊥BD于E,BE=EO=1,則BC的長為(  )
A.2$\sqrt{2}$B.2$\sqrt{3}$C.$2\sqrt{5}$D.4

分析 首先判斷出△ABO是等邊三角形,然后求出AC和AB的長,進(jìn)而利用勾股定理求出BC的長.

解答 解:∵四邊形ABCD是矩形,
∴AO=OB,
∵AE⊥BD于E,BE=EO=1,
∴△ABO是等邊三角形,
∴AB=BO=2,
∴AC=2OB=4,
∴AB=$\sqrt{A{C}^{2}-A{B}^{2}}$=$\sqrt{{4}^{2}-{2}^{2}}$=2$\sqrt{3}$,
故選B

點(diǎn)評 本題主要考查了矩形的性質(zhì),解題的關(guān)鍵是判斷出△ABO是等邊三角形,此題難度不大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=$\frac{x-2}{x+1}$中,自變量x的取值范圍是( 。
A.x>2B.x≠2C.x>-1D.x≠-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

5.某個(gè)關(guān)于x的一元一次不等式組的解集在數(shù)軸上表示如圖,則該解集是( 。
A.-2<x<3B.-2<x≤3C.-2≤x<3D.-2≤x≤3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知:DE∥BC,AB∥DF.
(1)求i正:OB2=OE•OF;
(2)聯(lián)結(jié)OD,若∠OBC=∠ODC,求證:四邊形ABCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.計(jì)算$\sqrt{(-2)^{2}}$的結(jié)果為( 。
A.2B.-2C.4D.±2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

19.下列運(yùn)算中,正確的是( 。
A.(-a)2•(-a)3=a5B.(a32=a5C.(-2a23=-8a6D.(ab22(a2b)=a3b5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

6.如圖,AB∥EF,AB=EF,添加下面哪個(gè)條件不能使△ABC≌△EFD( 。
A.BD=FCB.∠A=∠EC.AC∥DED.AC=ED

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,反比例函數(shù)y=$\frac{6}{x}$(x>0)的圖象經(jīng)過矩形OABC對角線的交點(diǎn)M,分別與AB、BC交于點(diǎn)D、E,則四邊形ODBE的面積是( 。
A.6B.12C.18D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

1.2的相反數(shù)是( 。
A.-2B.-$\frac{1}{2}$C.2D.$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案