【題目】如圖,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,點(diǎn)D是斜邊BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)D分別作DE⊥AB于點(diǎn)E,DF⊥AC于點(diǎn)F,點(diǎn)G為四邊形DEAF對(duì)角線交點(diǎn),則線段GF的最小值為_______.
【答案】
【解析】
由勾股定理求出BC的長(zhǎng),再證明四邊形DEAF是矩形,可得EF=AD,根據(jù)垂線段最短和三角形面積即可解決問題.
解:∵∠BAC=90°,且BA=9,AC=12,
∴在Rt△ABC中,利用勾股定理得:BC===15,
∵DE⊥AB,DF⊥AC,∠BAC=90°
∴∠DEA=∠DFA=∠BAC=90°,
∴四邊形DEAF是矩形,
∴EF=AD,GF=EF
∴當(dāng)AD⊥BC時(shí),AD的值最小,
此時(shí),△ABC的面積=AB×AC=BC×AD,
∴AD===,
∴EF=AD=,因此EF的最小值為;
又∵GF=EF
∴GF=×=
故線段GF的最小值為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,則點(diǎn)A2 019的坐標(biāo)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形中,,,點(diǎn)是邊的中點(diǎn),點(diǎn)是邊上一動(dòng)點(diǎn)(不與點(diǎn)重合),延長(zhǎng)交射線于點(diǎn),連接,.
(1)求證:四邊形是平行四邊形;
(2)填空:
①當(dāng)的值為_______時(shí),四邊形是矩形;
②當(dāng)的值為______時(shí),四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠BAC=60° ,∠B=80° ,DE垂直平分AC交BC于點(diǎn)D,交AC于點(diǎn)E.
(1)求∠BAD的度數(shù);
(2)若AB=10,BC=12,求△ABD的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC的頂點(diǎn)都在方格線的交點(diǎn)(格點(diǎn))上.
(1)將△ABC繞C點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)90°得到△A′B′C′,請(qǐng)?jiān)趫D中畫出△A′B′C′.
(2)將△ABC向上平移1個(gè)單位,再向右平移5個(gè)單位得到△A″B″C″,請(qǐng)?jiān)趫D中畫出△A″B″C″.
(3)若將△ABC繞原點(diǎn)O旋轉(zhuǎn)180°,A的對(duì)應(yīng)點(diǎn)A1的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】瀘西某著名風(fēng)景旅游景點(diǎn)于5 月1日前后相繼開放,為了更好的吸引游客前去游覽,某景點(diǎn)給出團(tuán)體購買公園門票票價(jià)如下:
購票人數(shù) | 1~50 | 51~100 | 100人以上 |
每人門票(元) | 13元 | 11元 | 9元 |
今有甲、乙兩個(gè)旅行團(tuán),已知甲團(tuán)人數(shù)少于50人,乙團(tuán)人數(shù)不超過100人.若分別購票,兩團(tuán)共計(jì)應(yīng)付門票費(fèi)1392元,若合在一起作為一個(gè)團(tuán)體購票,總計(jì)應(yīng)付門票費(fèi)1080元.
(1)請(qǐng)你判斷乙團(tuán)的人數(shù)是否也少于50人.
(2)求甲、乙兩旅行團(tuán)各有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文具店出售、兩種文具.文具每套元,文具每套元,該店開展促銷活動(dòng),向客戶提供兩種優(yōu)惠方案:
①買一套文具送一套文具.
②文具和文具都按定價(jià)的付款.
現(xiàn)某客戶要到該店購買文具套,文具套()
()若該客戶按方案①購買需付款____________________元(用含的代數(shù)式表示);若該客戶按方案②購買需付款____________________元(用含的代數(shù)式表示)
()當(dāng)時(shí),通過計(jì)算說明按哪種方案購買較為合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形 ABCD 中,∠BAD=α,∠BCD=180°-α,BD 平分∠ABC.
(1)如圖,若α=90°,根據(jù)教材中一個(gè)重要性質(zhì)直接可得 DA=CD,這個(gè)性質(zhì)是 ;
(2)問題解決:如圖,求證:AD=CD;
(3)問題拓展:如圖,在等腰△ABC 中,∠BAC=100°,BD 平分∠ABC,求證:BD+AD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
在數(shù)學(xué)課上,老師請(qǐng)同學(xué)思考如下問題:如圖①,我們把一個(gè)四邊形的四邊中點(diǎn)依次連接起來得到的四邊形是平行四邊形嗎?
小敏在思考問題,有如下思路:連接.
結(jié)合小敏的思路作答.
(1)若只改變圖①中四邊形的形狀(如圖②),則四邊形還是平行四邊形嗎?說明理由;
(參考小敏思考問題方法)
(2)如圖②,在(1)的條件下,若連接.
①當(dāng)與滿足什么條件時(shí),四邊形是矩形,寫出結(jié)論并證明;
②當(dāng)與滿足____時(shí),四邊形是正方形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com