【題目】瀘西某著名風景旅游景點于5 月1日前后相繼開放,為了更好的吸引游客前去游覽,某景點給出團體購買公園門票票價如下:
購票人數 | 1~50 | 51~100 | 100人以上 |
每人門票(元) | 13元 | 11元 | 9元 |
今有甲、乙兩個旅行團,已知甲團人數少于50人,乙團人數不超過100人.若分別購票,兩團共計應付門票費1392元,若合在一起作為一個團體購票,總計應付門票費1080元.
(1)請你判斷乙團的人數是否也少于50人.
(2)求甲、乙兩旅行團各有多少人?
【答案】(1)乙團的人數大于50人;(2)甲旅行團有36人,乙旅行團有84人.
【解析】
(1)甲團人數少于50人,若乙團人數也少于50人,則甲乙分別購票所需的錢數<100×13=1300<1392,所以乙團的人數不少于50人,不超過100人;
(2)本題中的相等關系是“分別購票,兩團共計應付門票費1392元”和“作為一個團體購票,總計應付門票費1080元”,據此列方程組求解即可.
解:(1)假設乙團的人數也少于50人,因為甲旅行團人數少于50人
所以可得甲乙分別購票所需的錢數小于1300,
又因為分別購票,兩旅行團共計應付門票費1392元,
所以可得出乙團的人數大于50人;
(2)設甲團人數為x,乙團人數為y,由題意得:
①當甲乙兩團總人數在51~100人時,
解得:x=156(不合題意舍去),
②當甲乙兩團總人數在100人以上時,
,
解得.
答:甲、乙兩個旅行團各有36人、84人.
科目:初中數學 來源: 題型:
【題目】閱讀材料,請回答下列問題.
材料一:我國古代數學家秦九韶在《數書九章》中記述了“三斜求積術”,即已知三角形的三邊長,求它的面積,用現代式子表示即為:①(其中為三角形的三邊長,為面積),而另一個文明古國古希臘也有求三角形面積的“海倫公式”;……②(其中)
材料二:對于平方差公式:公式逆用可得:,例:
(1)若已知三角形的三邊長分別為4,5,7,請分別運用公式①和公式②,計算該三角形的面積;
(2)你能否由公式①推導出公式②?請試試,寫出推導過程.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某工廠現有甲種原料360千克,乙種原料290千克,計劃利用這兩種原料生產A、B兩種產品共50件,已知生產一件A種產品用甲種原料9千克,乙種原料3千克,可獲利700元;生產一件B種產品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產品的生產件數,有哪幾種方案?請你設計出來;
(2)設生產A、B兩種產品總利潤為y元,其中一種產品生產件數為x件,試寫出y與x之間的函數關系式,并利用函數的性質說明那種方案獲利最大?最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,且BA=9,AC=12,點D是斜邊BC上的一個動點,過點D分別作DE⊥AB于點E,DF⊥AC于點F,點G為四邊形DEAF對角線交點,則線段GF的最小值為_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知AB是⊙O的直徑,⊙O過BC的中點D,且DE垂直AC于E.
(1)求證:AB=AC;
(2)求證:DE是⊙O的切線;
(3)若AB=13,BC=10,求DE的長
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】亞奧理事會于年月3日在土庫曼斯坦阿什哈巴德舉行第屆代表大會,并在會上投票選出年第屆亞運會舉辦城市為杭州.個城市的國際標準時間(單位:時)在數軸上表示如圖所示,那么北京時間年月日時應是( ).
A.倫敦時間年月日時
B.巴黎時間年月日時
C.智利時間年月日時
D.曼谷時間年月日時
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,以O(0,0)、A(1,-1)、B(2,0)為頂點,構造平行四邊形,下列各點中不能作為平行四邊形第四個頂點坐標的是( 。
A. (3,-1) B. (-1,-1) C. (1,1) D. (-2,-1)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過點(﹣1,0),對稱軸l如圖所示,則下列結論:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正確的結論是( )
A.①③ B.②③ C.②④ D.②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com